The number of Ml of C₅H₈ that can be made from 366 ml C₅H₁₂ is 314.7 ml of C₅H₈
<u><em>calculation</em></u>
step 1: write the equation for formation of C₅H₈
C₅H₁₂ → C₅H₈ + 2 H₂
Step 2: find the mass of C₅H₁₂
mass = density × volume
= 0.620 g/ml × 366 ml =226.92 g
Step 3: find moles Of C₅H₁₂
moles = mass÷ molar mass
from periodic table the molar mass of C₅H₁₂ = (12 x5) +( 1 x12) = 72 g/mol
moles = 226.92 g÷ 72 g/mol =3.152 moles
Step 4: use the mole ratio to determine the moles of C₅H₈
C₅H₁₂:C₅H₈ is 1:1 from equation above
Therefore the moles of C₅H₈ is also = 3.152 moles
Step 5: find the mass of C₅H₈
mass = moles x molar mass
from periodic table the molar mass of C₅H₈ = (12 x5) +( 1 x8) = 68 g/mol
= 3.152 moles x 68 g/mol = 214.34 g
Step 6: find Ml of C₅H₈
=mass / density
= 214.34 g/0.681 g/ml = 314.7 ml
Answer:
The weight-average molar mass of polystyrene is 134,160 g/mol.
Explanation:
Molar mass of the monomer styrene ,
, M=104 g/mol
Given , number average molar mass of the polymer , M'= 89,440 g/mol
Degree of polymerization = n

The weight-average molar mass = 
Molar mass dispersity is ratio of weight-average molar mass to the number average molar mass of the polymer.



The weight-average molar mass of polystyrene is 134,160 g/mol.
Answer:
24.6g of NaCl
Explanation:
Expression of the reaction:
2NaCl → 2Na + Cl₂
Given parameters:
Mass of Cl₂ = 15g
Unknown:
Mass of NaCl = ?
Solution:
To solve this problem, we have to use mole relationships.
Find the number of moles of the mass of the given specie;
Number of moles =
Molar mass of Cl₂ = 2(35.5) = 71g/mol
Number of moles =
= 0.21mole
Now;
From the balanced reaction equation;
1 mole of Cl₂ is produced from 2 moles of NaCl;
0.21 mole of Cl₂ will be produced from 0.21 x 2 = 0.42mole of NaCl
So,
Mass of NaCl = number of moles x molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Mass of NaCl = 0.42 x 58.5 = 24.6g of NaCl
Rigidity is the inability to bent or be force out of shape while compressibility is the ability to be flattened, pressed or squeezed into a smaller piece.
density is the degree of compactness of a substance.