<span>Condensation is the change of
the substance from liquid to solid phase. Example of this is the formation of
ice. Vaporization is the change of substance from liquid to gas phase. Example of
this is the boiling of water. Deposition is the change of a substance from gas
to solid phase. Example of this is the formation of ice on a winter day. Sublimation
is the change of a substance from solid to gas phase. Example of this is dry
ice. The answer is letter C.</span>
Explanation:
Given that,
Wavelength of the light, 
(a) Slit width, 
The angle that locates the first dark fringe is given by :



(b) Slit width, 
The angle that locates the first dark fringe is given by :



Hence, this is the required solution.
Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m
Answer:
The mass of the block, M =T/(3a +g) Kg
Explanation:
Given,
The upward acceleration of the block a = 3a
The constant force acting on the block, F₀ = Ma = 3Ma
The mass of the block, M = ?
In an Atwood's machine, the upward force of the block is given by the relation
Ma = T - Mg
M x 3a = T - Ma
3Ma + Mg = T
M = T/(3a +g) Kg
Where 'T' is the tension of the string.
Hence, the mass of the block in Atwood's machine is, M = T/(3a +g) Kg