Answer:
V₀y = 0 m/s
t = 2.47 s
V₀ₓ = 61.86 m/s
Vₓ = 61.86 m/s
Explanation:
Since, the ball is hit horizontally, there is no vertical component of velocity at initial point. So, the initial vertical velocity (V₀y) will beL
<u>V₀y = 0 m/s</u>
For the initial vertical velocity of golf ball we consider the vertical motion and apply 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = 30 m
g = 9.8 m/s²
t = time to hit the ground = ?
Therefore,
30 m = (0 m/s)(t) + (0.5)(9.8 m/s²)t²
t² = 30 m/4.9 m/s²
t = √6.122 s²
<u>t = 2.47 s</u>
For initial vertical velocity we analyze the horizontal motion of the ball. We neglect the frictional effects in horizontal motion thus the speed remains uniform. Hence,
V₀ₓ = Xt
where,
V₀ₓ = Initial vertical Velocity = ?
X = Horizontal Distance = 25 m
Therefore,
V₀ₓ = (25 m)(2.47 s)
<u>V₀ₓ = 61.86 m/s</u>
<u></u>
Due, to uniform motion in horizontal direction:
Final Vertical Velocity = Vₓ = V₀ₓ
Vₓ = 61.86 m/s
 
        
             
        
        
        
Answer:
The prediction for its maximum potential energy is 109,375 J
Explanation:
Given;
mass of the coaster car, m = 350 kg
speed of the coaster car at the lowest point, v = 25 m/s
The coaster car will have maximum kinetic energy at the lowest point and based on law of conservation of mechanical energy, the maximum kinetic energy of the coaster car at the lowest point will be equal to maximum potential energy at the highest point.



Therefore, the prediction for its maximum potential energy is 109,375 J
 
        
             
        
        
        
Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
                          
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s  
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
 
     
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
 
        
             
        
        
        
Answer:0.1759 v
Explanation:
Intensity of wave at receiver end is 
I=
I=
I=
Amplitude of electric field at receiver end

Amplitude of induced emf
=
=
=
 
        
             
        
        
        
Iron is a magnetic metal, and it is essential to the Earth's magnetic field!
Essentially it "records" (stores the information, maintains) the direction and orientation of the magnetic field.
Among others, the magnetic field protects the Earth from dangerous cosmic rays.