Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.
They typically represents different wavelengths of element due to its energy emission in the form of visible light. When an electron of that particular element move from a higher energy level down to a lower energy level, it gives off energy in the form of photon emission. Atom of a certain element has a unique electron arrangement thus it can considered that particular element's spectrum is unique.
Average velocity is 1..2 mi/min east
Explanation:
- Velocity = Displacement/Time
Here, displacement = 48 mi - 42 mi = 6 miles
Time = 5 minutes
⇒ Average Velocity = 6/5 = 1.2 mi/min east
After plugging all the data into the equation, the result of the relative centrifugal force (RCF) is measured in terms of g.
<h3>What is relative centrifugal force?</h3>
The relative centrifugal force (RCF) or the g force is the radial force generated by the spinning rotor as expressed relative to the earth's gravitational force.
RCF = ac/g
where;
- ac is centripetal acceleration
- g is acceleration due to gravity
where;
<h3>For example, </h3>
Find the maximum RCF of the JS-4.2 rotor can be obtained from its maximum speed (4200 rpm) and its rmax (250 mm);
Thus, after plugging all the data into the equation, the result is measured in terms of g.
Learn more about relative centrifugal force here: brainly.com/question/26887699
#SPJ1