The reaction between C2H2 and O2 is as follows:
2C2H2 + 5O2 = 4CO2 + 2H2O
After balancing the equation, the reaction ratio between C2H2 and O2 is 2:5.
The moles of O2 in this reaction is 84.0 mol. According to the above ratio, the moles of C2H2 needed to react completely with the O2 is 84.0mole *2/5 = 33.6 mole.
Answer:
a, and f.
Explanation:
To be deprotonated, the conjugate acid of the base must be weaker than the acid that will react, because the reactions favor the formation of the weakest acid. The pKa value measures the strength of the acid. As higher is the pKa value, as weak is the acid. So, let's identify the conjugate acid and their pKas:
a. NaNH2 will dissociate, and NH2 will gain the proton and forms NH3 as conjugate acid. pKa = 38.0, so it happens.
b. NaOH will dissociate, and OH will gain the proton and forms H2O as conjugate acid. pKa = 14.0, so it doesn't happen.
c. NaC≡N will dissociate, and CN will gain a proton and forms HCN as conjugate acid. pKa = 9.40, so it doesn't happen.
d. NaCH2(CO)N(CH3)2 will dissociate and forms CH3(CO)N(CH3)2 as conjugate acid. pKa = -0.19, so it doesn't happen.
e. H2O must gain one proton and forms H3O+. pKa = -1.7, so it doesn't happen.
f. CH3CH2Li will dissociate, and the acid will be CH3CH3. pKa = 50, so it happens.
Answer:
D
Explanation:
It is D because once youve put together the ingredients and baked it you can not go in and taake out every ingredient and put it back to how it was before (Please also try to help me with my question it it about scaled copies, Please and thank you!)
C₆H₁₂O₆, or glucose, is oxidized in the presence of oxygen to form carbon dioxide and water. The reaction equation for this is:
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O
Therefore, if 6 moles of oxygen are consumed, we can see from the equation that one mole of C₆H₁₂O₆ will be consumed.
Answer:
Its the first second and the fourth