1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
5

In a microwave oven, electrons describe circular motion in a magnetic field within a special tube called amagnetron; as you'll l

earn in Chapter 29, the electrons' motion results in the production of micowaves. The electrons circle at a frequency of 2.15 GHz . The magnetron can accommodate electron orbits with maximum diameter 2.62 mm .
Part A

What's the magnetic field strength?

Part B

What's the electrons' energy in eV.
Physics
1 answer:
QveST [7]3 years ago
5 0

Answer:

The magnetic field strength and the electrons' energy are 0.077 T and 0.8906 eV.

Explanation:

Given that,

Diameter = 2.62 mm

Frequency = 2.15 GHz

(A). We need to calculate the magnetic field strength

Using formula of the magnetic field strength

B=\dfrac{2\pi mf}{e}

Where, f = frequency

e = charge of electron

Put the value into the formula

B=\dfrac{2\times3.14\times9.1\times10^{-31}\times2.15\times10^{9}}{1.6\times10^{-19}}

B=0.077\ T

(B). We need to calculate the energy of electron

Using formula of energy

E=\dfrac{1}{2}m(r\omega)^2

E=\dfrac{1}{2}\times9.1\times10^{-31}\times(1.31\times10^{-3}\times2\pi\times2.15\times10^{9})^2

E=1.4249\times10^{-16}\ J

The energy in eV

1 eV=1.6\times10^{-16}\ J

E=\dfrac{1.4249\times10^{-16}}{1.6\times10^{-16}}

E=0.8906\ eV

Hence, The magnetic field strength and the electrons' energy are 0.077 T and 0.8906 eV.

You might be interested in
a painting in an art gallery has height h and is hung so that its lower edge is a distance d above the eye of an observer. How f
harkovskaia [24]

Solution:

With reference to Fig. 1

Let 'x' be the distance from the wall

Then for \DeltaDAC:

tan\theta = \frac{d}{x}

⇒ \theta = tan^{-1} \frac{d}{x}

Now for the \DeltaBAC:

tan\theta = \frac{d + h}{x}

⇒ \theta = tan^{-1} \frac{d + h}{x}

Now, differentiating w.r.t x:

\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}]

For maximum angle, \frac{d\theta }{dx} = 0

Now,

0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}][/tex]

0 = \frac{-(d + h)}{(d + h)^{2} + x^{2}} -\frac{-d}{x^{2} + d^{2}}

\frac{-(d + h)}{(d + h)^{2} + x^{2}} = \frac{{d}{x^{2} + d^{2}}

After solving the above eqn, we get

x = \sqrt{\frac{d}{d + h}}

The observer should stand at a distance equal to x = \sqrt{\frac{d}{d + h}}

4 0
3 years ago
What is a non contact force that attracts all objects to the centre of the earth
beks73 [17]

Answer:

<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>

<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>

4 0
3 years ago
Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do n
jenyasd209 [6]

The statement about pointwise convergence follows because C is a complete metric space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) − fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, it is pointwise Cauchy and therefore converges pointwise to a limit function f. If |fn(z)−fm(z)| ≤ ε for all n,m ≥ N and all z ∈ S, let m → ∞ to show that |fn(z)−f(z)|≤εforn≥N andallz∈S. Thusfn →f uniformlyonS.

2. This is immediate from (2.2.7).

3. We have f′(x) = (2/x3)e−1/x2 for x ̸= 0, and f′(0) = limh→0(1/h)e−1/h2 = 0. Since f(n)(x) is of the form pn(1/x)e−1/x2 for x ̸= 0, where pn is a polynomial, an induction argument shows that f(n)(0) = 0 for all n. If g is analytic on D(0,r) and g = f on (−r,r), then by (2.2.16), g(z) =

3 0
2 years ago
What characteristics of matter he was studying ​
Levart [38]

Answer:

The main physical characteristics of matter are mass, volume, weight, density, odor, and color. These are the characteristics that help us to see matter, feel matter, and taste matter.

Explanation:

5 0
3 years ago
When sitting in the tree the cat has a total of 1375J in its Gravitational potential store. What is the maximum amount of energy
Murrr4er [49]

Answer:

1375J

Explanation:

The gravitational potential/potential energy of the at the top of the tree which is the energy by virtue of its position.

P.E = mgh

mass = m

Acceleration due to gravity = g

height = h

At the top of the tree, the value of h (height) is high resulting in the gravitational potential. When the cat lands on the ground, the value of h is zero, the the gravitational potential would be zero and all the potential energy have been converted to other forms of energy.

Therefore, the total gravitational potential store is equal to the maximum amount of energy that can be transferred which is equal to 1375J.

4 0
3 years ago
Other questions:
  • The mass of a star can be determined by studying ___.
    11·2 answers
  • Imagine two billiard balls on a pool table. Ball A has a mass of 2 kilograms and ball
    14·2 answers
  • Mendeleev noticed that if he organized the elements by atomic weight certain patterns emerged. for instance, elements in the sam
    15·2 answers
  • How much force is needed to accelerate a 100 kg mass at a rate of 2.5 m/s^2
    5·1 answer
  • A 0.250 kg mass is attached to a spring with k=18.9 N/m. At the equilibrium position, it moves 2.89 m/s. What is the amplitude o
    15·1 answer
  • If the net force on an object is zero then the object has
    8·1 answer
  • The amount of electrons that an atom loses, shares or gains is the ________________.
    14·1 answer
  • An opera singer who is a baritone, lowers his pitch and raises his voice for a song. Which best describes how the resulting soun
    14·1 answer
  • what happens if a voltmeter is connected in series with other components of the circuit (i.e , ammeter, cell, battery, resistor
    7·1 answer
  • Is the following substance an element, compound, or a solution ?(oxygen)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!