Answer:
The answer is 24
Explanation:
Its made up of 6 carbon atoms
6 oxygen atoms
12 hydrogen atoms
A ) v = v o + a t ( the acceleration will be negative )
9.50 = 16.0 + a * 1.2
a * 1.2 = -16.0 + 9.50
a * 1.2 = - 6.5
a = - 6.5 : 1.2
a = - 5.4167 m/s²
F = m * a = 950 kg * 5.4167 m/s²
F = 5,145.8 N ( the average force exerted on a car during braking )
b ) d = v o - a t² / 2
d = 16.0 * 1.2 - ( 5.4167 * 1.2² / 2 ) =
= 19.20 - 3.90 = 15.30 m
Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J
Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.