Answer:
m/s^2
Explanation:
Force = mass × acceleration
kgm/s^2 = kg × acceleration
where acceleration = Force ÷ mass
= kg m/s^2 ÷ kg
:Acceleration = m/s^2
Ok but y I thought it was upside down tho...
The Mercury's mass for the given acceleration due to gravity is 0.3152 x 10²⁴ kg.
The ratio of the calculated and accepted value of the Mercury's mass is 0.95.
<h3>What is mass?</h3>
Mass is the amount of matter present in the object.
The mass of the object is always constant, anywhere it is on the Earth or Moon or any other planet.
Given is the acceleration due to gravity of Mercury planet at North pole is g = 3.698 m/s² and the radius of Mercury planet is 2440 km.
The acceleration due to gravity is related with mass as
g = GM/R²
Substitute the values, we have
3.698 = 6.67 x 10⁻¹¹ x M/(2440 x1000)³
M = 2.2016 x 10¹³ / 6.67 x 10⁻¹¹
M = 0.3152 x 10²⁴ kg
Thus, the mercury's mass is 0.3152 x 10²⁴ kg.
(b) Accepted value of Mercury's mass is 3.301 x 10²³ kg
Ratio of the value of mass calculated and accepted is
Mcalc/M accep = 0.3152 x 10²⁴ kg / 3.301 x 10²³ kg
= 0.95
Thus, the ratio is 0.95
Learn more about mass.
brainly.com/question/19694949
#SPJ1
Answer:
d ) is the answer.
Explanation:
Let M be the mass and R be the radius of each of ball , hoop and disc.
kinetic energy of sphere - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of sphere - 1/2 MV² + 1/2 x 2/5 MR² ω²
= 1/2 MV² + 1/5 MR² ω²
MV² ( 1/2 + 1/5 )
= .7 MV²
kinetic energy of Disk - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of Disk - 1/2 MV² + 1/2 x 1/2 MR² ω²
= 1/2 MV² + 1/4 MR² ω²
MV² ( 1/2 + 1/4 )
= .75 MV²
kinetic energy of Hoop - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of hoop - 1/2 MV² + 1/2 MR² ω²
= 1/2 MV² + 1/2 MR² ω²
MV² ( 1/2 + 1/2 )
= MV²
Kinetic energy is largest in case of hoop and least in case of sphere . So hoop will go up to the highest point and sphere will go to a height which will be least among the three.