That would be phosphorus. It’s electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^3
Answer:
B
Explanation:
Double Covalent bonds or as you say "binary" bonds consists of 2 non-metals only, nothing else.
Hope this helps!
Answer:
λ = 6.25 × 10⁻¹⁰ m
x-ray
General Formulas and Concepts:
Speed of Light = Wavelength times Frequency
Explanation:
<u>Step 1: Define</u>
C = 3.0 × 10⁸ m/s
ν = 4.80 × 10¹⁷ Hz (s⁻¹)
λ = unknown
<u>Step 2: Solve for wavelength</u>
3.0 × 10⁸ m/s = λ(4.80 × 10¹⁷ Hz)
λ = 6.25 × 10⁻¹⁰ m
<u>Step 3: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules.</em>
6.25 has 3 sig figs. No changes necessary.
<u>Step 4: Identify</u>
6.25 × 10⁻¹⁰ m is in the x-ray spectrum according the the Electromagnetic Spectrum
With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>