Answer:
760 mmHg
Explanation:
Step 1: Given data
- Partial pressure of nitrogen (pN₂): 592 mmHg
- Partial pressure of oxygen (pO₂): 160 mmHg
- Partial pressure of argon (pAr): 7 mmHg
- Partial pressure of the trace gas (pt): 1 mmHg
Step 2: Calculate the atmospheric pressure
Since air is a gaseous mixture, the atmospheric pressure is equal to the sum of the gases that compose it.
P = pN₂ + pO₂ + pAr + pt = 592 mmHg + 160 mmHg + 7 mmHg + 1 mmHg = 760 mmHg
Answer : If we list the given chemicals according to their increasing oxidising ability then the order will be like this; 1 being the strongest and 6 being the weakest
1. K > 2. Ca >3. Ni> 4. Cu> 5. Ag> 6.Au
Explanation : Considering the reduction potential of each chemical species it will be easy to identify their oxidising capacity and differentiate accordingly;
More negative the value of reduction potential more is the ability of the chemical species to get oxidised.
Chemicals with their reduction potential is given below.
K has -2.92; Ca has -2.76; Ni has -0.23; Cu has 0.52; Ag has 1.50 and Au has 1.50.
Wavelength= velocity/frequency
wavelength= (3.0 x 10^8m/s) / 7.5 x 10^12 Hz)
you can do the math
I am assuming u that 108 is 10^8 and the 1012 is 10^12
Answer:
powdered sugar
Explanation:
The higher is the exposed area of sugar, the faster is the dissolution process. Thus, to choose between the different types of sugar, we have to look at the volume occupied by the sugar.
In sugar cubes, the particles of sugar as compacted in a cube, so the particles inside the cube are not exposed to the solvent (water). So, sugar cubes have the slowest dissolution process. Then, in granulated sugar, the particles have more area exposed, so this type of sugar will dissolve faster than sugar cubes. Finally, powdered sugar is composed of tiny particles with more are exposed, so powdered sugar has the fastest dissolution process.
Therefore, powdered sugar will dissolve the fastest.