Alkenes must undergo addition because they have easily broken tt bonds.
Markonikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the substituted carbon.
Hydroxides, amines and alcoxides undergo substitution and elimination, but can do so only when the heteroatom is made into a good leaving group.
Answer : Option 1) The true statement is each carbon-oxygen bond is somewhere between a single and double bond and the actual structure of format is an average of the two resonance forms.
Explanation : The actual structure of formate is found to be a resonance hybrid of the two resonating forms. The actual structure for formate do not switches back and forth between two resonance forms.
The O atom in the formate molecule with one bond and three lone pairs, in the resonance form left with reference to the attached image, gets changed into O atom with two bonds and two lone pairs.
Again, the O atom with two bonds and two lone pairs on the resonance form left, changed into O atom with one bond and three lone pairs. It concludes that each carbon-oxygen bond is neither a single bond nor a double bond; each carbon-oxygen bond is somewhere between a single and double bond.
Also, it is seen that each oxygen atom does not have neither a double bond nor a single bond 50% of the time.
Molar mass of MgCO3 is 84.313 g/mol
You can calculate this from data on the periodic table:
Molar mass Mg = 24.305g/mol
molar mass C = 12.011g/mol
molar mass O = 15.999g/mol mass 3 mol = 47.997g
Total = 84.313g/mol
Mass to be used in 1.2L of 1.5M solution = 84.313g * 1.2L * 1.5mol /L = 151.763g
I have not taken significant figures into account
The balanced equation you provide is not necessary in this calculation
Answer:The major types of solids are ionic, molecular, covalent, and metallic. ... (network) , or metallic, where the general order of increasing strength of interactions. ... In ionic and molecular solids, there are no chemical bonds between the ... by dipole –dipole interactions, London dispersion forces, or hydrogen ...
Explanation:
Hope this will help you