There is a displacement. Just because the ball is thrown up,
and not crossways, doesn't mean its location is not moving. Remember, positive
displacement is together a displacement in the direction east, right, and up.
The velocity is the distance over time. To compute that, you must look how high
the ball moved before falling back down. Acceleration is expected to be
constant at 9.80m/s^2. That is the force of gravity. But remember that you are disregarding
air friction when you are computing the acceleration.
Answer:
a. Disk, 28 thousand light-years from
Explanation:
Since, a galactic disc is a component of disc galaxies, for instance spiral galaxies and lenticular galaxies. It consists of a stellar component and a gaseous component.
Also, the Sun lies within the galactic disk or in other words it is thought to be located in the galactic disk,
The Sun is located about 26,000 light-years away from the centre of the galaxy.
∵ From the given options 28,000 is nearest to 26,000
Hence, the sun is about 28 thousand light-years from the centre of the galaxy.
i.e. OPTION 'a' would be correct.
Hi there!
Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.
We also know there was work done on the ball by air resistance that decreased the ball's total energy.
Let's do a summation using the equations:

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

And:

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.
Therefore:

Solving for the work done by air resistance:


The net force required to accelerate a car is 6000 N.
Force is defined as the product of the mass and acceleration of the body. Force is used to changing the velocity that is to accelerate an object or a body of a particular mass. The unit of Force is Newton or kg m/s^2.
The formula used to calculate the net force is :
F = ma
where, F = Force
m = mass = 2000 kg
a = acceleration = 3.00 m/s^2
∴ F = 2000*3
F = 6000 N
Thus, to accelerate the car at 3.00 m/s^2 of mass 2000 kg net force required is 6000 N.
To learn more about force,
brainly.com/question/1046166
I believe the answer to your question is “Lithosphere plate boundaries”
The planet Earth is covered by a layer formed by land and rocks called the earth's crust or lithosphere. This crust is not smooth and uniform, but rather irregular and composed of tectonic plates, also called lithosphere plates. These plates are not fixed as they are under the magma (high temperature molten rock).
Hope this helps!:)