The answer is D because the box b's force to the left is not being cancelled out and box d's force is trying to be cancelled out, but he has more force going up then down so he is moving up
Explanation:
joesjejj2kwkek726k46m6em6ms6m26m36m7mem7m6x7mxbdgshndkdjd
Answer:
4600s
Explanation:

For a first order reaction the rate of reaction just depends on the concentration of one specie [B] and it’s expressed as:
![-\frac{d[B]}{dt}=k[B] - - - -\frac{d[B]}{[B]}=k*dt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3Dk%5BB%5D%20-%20-%20-%20%20-%5Cfrac%7Bd%5BB%5D%7D%7B%5BB%5D%7D%3Dk%2Adt)
If we have an ideal gas in an isothermal (T=constant) and isocoric (v=constant) process.
PV=nRT we can say that P = n so we can express the reaction order as a function of the Partial pressure of one component.
![-\frac{d[P(N_{2}O_{5})]}{P(N_{2}O_{5})}=k*dt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%7D%7BP%28N_%7B2%7DO_%7B5%7D%29%7D%3Dk%2Adt)
Integrating we get:
![\int\limits^p \,-\frac{d[P(N_{2}O_{5})]}{P(N_{2}O_{5})}=\int\limits^ t k*dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ep%20%5C%2C-%5Cfrac%7Bd%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%7D%7BP%28N_%7B2%7DO_%7B5%7D%29%7D%3D%5Cint%5Climits%5E%20t%20k%2Adt)
![-(ln[P(N_{2}O_{5})]-ln[P(N_{2}O_{5})_{o})])=k(t_{2}-t_{1})](https://tex.z-dn.net/?f=-%28ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D-ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%29%5D%29%3Dk%28t_%7B2%7D-t_%7B1%7D%29)
Clearing for t2:
![\frac{-(ln[P(N_{2}O_{5})]-ln[P(N_{2}O_{5})_{o})])}{k}+t_{1}=t_{2}](https://tex.z-dn.net/?f=%5Cfrac%7B-%28ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D-ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%29%5D%29%7D%7Bk%7D%2Bt_%7B1%7D%3Dt_%7B2%7D)
![ln[P(N_{2}O_{5})]=ln(650)=6.4769](https://tex.z-dn.net/?f=ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%3Dln%28650%29%3D6.4769)
![ln[P(N_{2}O_{5})_{o}]=ln(760)=6.6333](https://tex.z-dn.net/?f=ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%5D%3Dln%28760%29%3D6.6333)

Answer:
yes it is and sometimes it's not