1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Triss [41]
3 years ago
6

State the dimension of surface tension​

Physics
1 answer:
Luda [366]3 years ago
3 0

Answer:

Actually, surface tension is the to force per unit length. That means formula for surface tension is = force/length . As we know that the dimensional formula for length is L . And that for force is MLT^-2. So the dimensional formula for surface tension can be obtained by dividing the dimensional formula of force and length.

Explanation:

You might be interested in
What is the force that can cause two pieces of iron to attract each other?
Rudiy27

Answer:

B. Magnetic Force

Explanation:

two pieces of irons cannot attract each other unless at least one of them is magnetize. That force is called magnetism.

6 0
3 years ago
Read 2 more answers
Throw two balls from the same height at the same time at an initial speed of 20 m/s. One is thrown vertically down, while the ot
labwork [276]

The time difference between their landing is 2.04 seconds.

<h3>Time of difference of the two balls</h3>

The ball thrown vertical upwards will take double of the time taken by the ball thrown vertically downwards.

Time difference, = 2t - t = t

t = √(2h/g)

where;

  • h is the height of fall
  • g is acceleration due to gravity

Apply the principle of conservation of energy;

¹/₂mv² = mgh

h = v²/2g

where;

  • v is speed of the ball

h = (20²)/(2 x 9.8)

h = 20.41 m

<h3>Time of motion</h3>

t = √(2 x 20.41 / 9.8)

t = 2.04 s

Thus, the time difference between their landing is 2.04 seconds.

Learn more about time of motion here: brainly.com/question/2364404

#SPJ1

6 0
2 years ago
What is the force on a 15.5 kg ball that is falling freely due to the pull of gravity
velikii [3]

Answer:

151.9 N

Explanation:

Force = mass x acceleration

Acceleration due to gravity is 9.8 m/s^2 (you should memorize this number).

F = ma

F = (15.5)(9.8)

F = 151.9

3 0
3 years ago
A storm cloud has an electric charge of (2.1400x10^1) C near the top of the cloud and (2.99x10^1) C near the bottom of the cloud
blagie [28]

Answer:

hey

Explanation:

4 0
3 years ago
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
4 years ago
Other questions:
  • How are
    5·1 answer
  • Find the vector v with the given magnitude and the same direction as u. Magnitude ||v|| = 10 Direction u = ⟨-3. 4⟩.
    6·1 answer
  • A 10 gram ball is rolling at 3 m/s. The ball has __________ energy. Calculate it. A 10 gram ball is held 2 meters from the groun
    15·1 answer
  • A 55.0 kg runner who weighs 539.0 N is accelerating at 3.2 m/s2. After 2
    5·2 answers
  • Learning Goal: To introduce the idea of physical dimensions and to learn how to find them.Physical quantities are generally not
    8·1 answer
  • A gnat takes off from one end of a pencil and flies around erratically for 41.641.6 s before landing on the other end of the sam
    12·1 answer
  • A player bounces a basketball on the floor, compressing it to 80.0 % of its original volume. The air (assume it is essentially N
    6·2 answers
  • a capacitor of unknown charged capacitance c is charged to 100v and the connected across an intially uncharged 60micro f capacit
    9·1 answer
  • Find -7a + 3b gtytfvnhfcfgc
    8·2 answers
  • A car starts from rest and after 5.5 seconds it is moving at 30 m/s. What is the value of t? Use one of the following to find th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!