1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
4 years ago
12

In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.

The shot leaves her hand at a height of 1.80 m above the ground.
A. How far does the shot travel?

B. Repeat the calculation of the first part for angle 42.5? .

C. Repeat the calculation of the first part for angle 45 ? .

D. Repeat the calculation of the first part for angle 47.5? .

E. At what angle of release does she throw the farthest?
Physics
1 answer:
HACTEHA [7]4 years ago
8 0

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

You might be interested in
What type of front involves fast moving thunderstorms and severe weather?
Lapatulllka [165]
The answer is "Cold Front".

A cold front is characterized as the change zone where a cool air mass is supplanting a hotter air mass. Cold fronts for the most part move from northwest to southeast. The air behind a cold front is recognizably colder and drier than the air in front of it.
6 0
3 years ago
In Ørsted’s observation, the current-carrying wire acted like a
hichkok12 [17]
B, C. Also literally a quick search yielded these results, roughly half the time to type this out. 
6 0
3 years ago
Read 2 more answers
If a body starts moving from rest its<br>initial velocity is<br>ų <br>V<br>zero<br>m/s​
Artist 52 [7]

Answer:

zero

When a Body start a from rest ,its initial velocity is zero.

6 0
3 years ago
What is the difference between vector and scalar ?
ddd [48]
The easiest, non-technical way to think about it is like this:

-- A scalar is a quantity that has a size but no direction.
Those include temperature, speed, cost, volume, distance, etc.

One number is all there is to know about it, and there's no way you can
add more of the same stuff to it that would cancel both of them out.

-- A vector is a quantity that has a size and also has a direction.
Those include force, displacement, velocity, acceleration, etc.

It takes more than one number to completely describe one of these.
Also, if you combine two of the same vector quantity in different ways,
you can get different results, and they can even cancel each other out.

Here are some examples.  Notice that in each of these examples,
every speed has a direction that goes along with it.  This turns the
scalar speed into a vector velocity.

If you're walking inside a bus, and the bus is driving along the road,
then your velocity along the road is the sum of your walking velocity
inside the bus plus the velocity of the bus along the road.

-- If you're walking north up the middle of the bus at 2 miles per hour
and the bus is driving north along the road at 20 miles per hour, then
your velocity along the road is 22 miles per hour north.

-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is driving north along the road at 5 miles per hour, then your
velocity along the road is 3 miles per hour north.

-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is just barely rolling north along the road at 2 miles per hour,
then your velocity along the road is zero.

--  If you're in a big railroad flat-car that's rolling north along the track
at 2 miles per hour, and you walk across the flat-car towards the east
at 2 miles per hour, then your velocity along the ground is 2.818 miles
per hour toward the northeast.
7 0
3 years ago
WILL GIVE BRAINLIEST IF CORRECT!
Norma-Jean [14]

Answer:

10000N

Explanation:

Given parameters:

Mass of the car  = 1000kg

Acceleration = 3m/s²

g  = 10m/s²

Unknown:

Weight of the car  = ?

Solution:

To solve this problem we must understand that weight is the vertical gravitational force that acts on a body.

 Weight  = mass x acceleration due to gravity

So;

    Weight  = 1000 x 10  = 10000N

5 0
3 years ago
Other questions:
  • Which form of energy does a plant store when light is transformed during photosynthesis?
    5·2 answers
  • Fiona drives 18 meters east and 24 meters south. What is the magnitude of her displacement?
    10·1 answer
  • Imagine a bouncing ball that does not lose any energy
    5·1 answer
  • Nothing is exempt from ________, which states the total energy remains constant during a physical change.
    6·1 answer
  • What property of sound enables us to distinguish one sound source from another?
    13·1 answer
  • Is there any absolute rest or motion? Describe the types of motion with one example of each type
    8·1 answer
  • Describe the forces that are acting on a person who is standing still on a sidewalk, and identify whether the forces are balance
    6·1 answer
  • The bottom of the hockey stick is called a?
    7·1 answer
  • Plz help I will mark as brainlest plz help me
    13·1 answer
  • A conducting sphere of radius 5. 0 cm carries a net charge of 7. 5 µc. what is the surface charge density on the sphere?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!