Answer:
331.7m/s
Explanation:
Given parameters:
Initial velocity = 100m/s
Acceleration = 50m/s²
Distance = 1km = 1000m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we have to apply the right motion equation shown below;
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
Now insert the parameters and solve;
v² = 100² + (2 x 50 x 1000)
v² = 110000
v = √110000 = 331.7m/s
Answer:
Stretch in the spring = 0.1643 (Approx)
Explanation:
Given:
Mass of the sled (m) = 9 kg
Acceleration of the sled (a) = 2.10 m/s
²
Spring constant (k) = 115 N/m
Computation:
Tension force in the spring (T) = ma
Tension force in the spring (T) = 9 × 2.10
Tension force in the spring (T) = 18.9 N
Tension force in the spring = Spring constant (k) × Stretch in the spring
18.9 N = 115 N × Stretch in the spring
Stretch in the spring = 18.9 / 115
Stretch in the spring = 0.1643 (Approx)
Answer:
True plz thank me this is the answer
Pretty sure it hit some rocks and landed on Mars
The answer is B because that that will make it more powerful but less lasting.