Answer:
77.88 lbm/ft³
Explanation:
Given,
Specific gravity, SG = 1.25
Density of water, ρ = 62.30 lbm/ft³
density of the fluid =
= S.G x ρ_{water}
= 62.30 x 1.25
= 77.88 lbm/ft³
Density of the fluid is equal to 77.88 lbm/ft³
The answer is d hope this helps
Answer: Relative motion
Explanation: If two objects are moving either towards or away from each other with both having their velocities in a reference frame and someone is outside this reference frame seeing the motion of the two objects.
The observer ( in his own frame of reference) will measure a different velocity as opposed to the velocities of the two object in their own reference frame. p
Both the velocity measured by the observer in his own reference frame and the velocity of both object in their reference is correct.
Velocities of this nature that have varying values based on motion referenced to another body is known as relative velocity.
Motion of this nature is known as relative motion.
<em>Note that the word reference frame is simply any where the motion is occurring and the specified laws of motion is valid</em>
<em />
For this example of ours, the reference frame of the companion is the train and the telephone poles has their reference frame as the earth.
The companion will measure the velocity of the telephone poles relative to him and the velocity of the telephone pole relative to an observer outside the train will be of a different value.
Answer:

Explanation:
We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.
= 16 m/s - a= 1.2 m/s²
- t= 10 s
Substitute the values into the formula.

Multiply.


We are solving for the initial velocity, so we must isolate the variable
. Subtract 12 meters per second from both sides of the equation.


The cyclist's initial velocity is <u>4 meters per second.</u>
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>