(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
Answer:
Work: 4.0 kJ, heat: 4.25 kJ
Explanation:
For a gas transformation at constant pressure, the work done by the gas is given by

where in this case we have:
is the pressure
is the initial volume
is the final volume
Substituting,

The 1st law of thermodynamics also states that

where
is the change in internal energy of the gas
Q is the heat absorbed by the gas
Here we know that

Therefore we can re-arrange the equation to find the heat absorbed by the gas:

Answer:
Explanation:
Answer
The true fact is that C is what happens in outer space. Both rotations take 27.3 days.
A: The exact opposite is true. It does rotate about it's axis.
B: Again this is just plain false. Given the way we observe it, the moon must be rotating around the earth.
D. they don't. 27.3 hours and 24 hours are not the same.
Answer:
480J
Explanation:
Using the formula:
Delta U = Q - W
Q:Heat (J)
Delta U: Changes in internal Energy (J)
W:Work (J)
We can plug in the give numbers, Q and W.
Delta U = 658J - 178J = 480J
The particles of the liquid inside a thermometer speed up and spread apart when the thermometer is heated. In short, the particles expand from one another when they're heated, and become condensed and compact when chilled.