His acceleration is
<em>(-0.05) · (his speed at the bottom of the hill) </em>m/s²
Answer: option 4: A wire that is 2-mm thick and coiled.
Explanation:
The current in each wire is same. The magnetic field due to a current carrying wire increases if the wire is coiled with the more number of turns. A thick wire would cause low resistance to the current. Hence, a 2-mm thick wire which is coiled would produce the strongest magnetic field.
Very funny. Can I do all your homework for you?
<h3><u>Answer;</u></h3>
18 Joules
<h3><u>Explanation;</u></h3>
- <em><u>Work is the measures the transfer of energy when an object moves over a given distance.</u></em>
- Work is therefore given by; Force × distance
Force =36 Newtons
Distance = 0.5 meters
- Hence; <em>work = 36 N × 0.5 N</em>
<em> = 18 Joules </em>
<h2>
Answer: (a)t=0.553s, (b)x=110.656m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which the travel of the bullet has two components: x-component and y-component. Being their main equations as follows:
x-component:
(1)
Where:
is the bullet's initial speed
because we are told the bullet is shot horizontally
is the time since the bullet is shot until it hits the ground
y-component:
(2)
Where:
is the initial height of the bullet
is the final height of the bullet (when it finally hits the ground)
is the acceleration due gravity
<h2>Part (a):</h2>
Now, for the first part of this problem, the time the bullet elapsed traveling, we will use equation (2) with the conditions given above:
(3)
(4)
Finding
:
(5)
Then we have the time elapsed before the bullet hits the ground:
(6)
<h2>Part (b):</h2>
For the second part of this problem, we are asked to find how far does the bullet traveled horizontally. This means we have to use the equation (1) related to the x-component:
(1)
Substituting the knonw values and the value of
found in (6):
(7)
(8)
Finally: