Answer: D.) 39,200 J
Via the equation of potential energy PE = mgh where m is mass, g is the average gravity on earth and h is the height. In this case m = 400 kg, g = 9.8, h = 10 m thus:

P.E.= 39,200 Joules
<span>A sheet of copper could cause the object to lose the most amount of heat. Copper is an essential element and a good conductor of heat. Heat can transfer from one end of a piece of copper to the other end.</span>
The model bridge captures all the structural attributes of the real bridge, at a reduced scale.
Part a.
Note that volume is proportional to the cube of length. Therefore the actual bridge will have 100^3 = 10^6 times the mass of the model bridge.
Because the model bridge weighs 50 N, the real bridge weighs
(50 N)*10^6 = 50 MN.
Part b.
The model bridge matches the structural characteristics of the actual bridge.
Therefore the real bridge will not sag either.
<em></em>
Answer:
1. The magnitude of the force from the spring on the object is zero on <em>Equilibrium.</em>
2. The magnitude of the force from the spring on the object is a maximum on <em>The top and bottom.</em>
3. The magnitude of the net force on the object is zero on <em>The Bottom.</em>
4. The magnitude of the force on the object is a maximum on <em>the Top.</em>
Explanation:
<em>1. Because the change in position delta X is zero.</em>
<em>2. Because of delta X.</em>
<em>3. Beacuse, the force of gravity and the force of the spring oppose each other to keep the block at rest, away from the equilibrium position.</em>
<em>4. Because, the force of the spring from compressiom and the force of gravity both act on the mass.</em>
Answer:
.
Explanation:
Let
denote the absolute temperature of this object.
Calculate the value of
before and after heating:
.
.
By the Stefan-Boltzmann Law, the energy that this object emits (over all frequencies) would be proportional to
.
Ratio between the absolute temperature of this object before and after heating:
.
Therefore, by the Stefan-Boltzmann Law, the ratio between the energy that this object emits before and after heating would be:
.