Answer:
3.9 seconds
Explanation:
Use constant acceleration equation:
y = y₀ + v₀ t + ½ at²
where y is the final position,
y₀ is the initial position,
v₀ is the initial velocity,
a is the acceleration,
and t is time.
Given:
y = 0 m
y₀ = 15 m
v₀ = 15 m/s
a = -9.8 m/s²
Substituting values:
0 = 15 + 15t + ½ (-9.8) t²
0 = 15 + 15t − 4.9t²
0 = 4.9t² − 15t − 15
Solve with quadratic formula:
t = [ -b ± √(b² − 4ac) ] / 2a
t = [ 15 ± √((-15)² − 4(4.9)(-15)) ] / 2(4.9)
t = [ 15 ± √(225 + 294) ] / 9.8
t = (15 ± √519) / 9.8
t = -0.79 or 3.9
It takes 3.9 seconds for the stone to reach the bottom of the well.
The negative answer is the time it takes the stone to travel from the bottom of the well up to the top of the well.
Answer:
Weight = 966 Newton.
Explanation:
Given the following data;
Length = 1.2 m
Width = 2.3 m
Pressure = 350 Pa
To find the weight of the tank;
We know that weight is the force of gravity acting on an object multiplied by its mass.
Weight = mg = force
Hence, we would determine the force using the parameters that were given.
But we would first determine the area of the rectangular tank.
Area of rectangle, A = length * width
A = 1.2 * 2.3
A = 2.76 m²
Mathematically, pressure is given by the formula;
Pressure = force/area
Force = pressure * area
Substituting into the formula, we have;
Force = 2.76 * 350
Force = 966 Newton
Therefore, the weight of the tank is 966 Newton.
B.a push or pull(which of the following best describes force)
If its out and has been rained on it will rust if its like metal or iron stuff like that it will rust
the answer is rust
but no so quickly
Answer:
2, High mass stars.
Add-on:
i hope this helped at all. im sorry if its incorrect.