1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
3 years ago
12

05. The time required to complete one lap around a perfectly circular track having a radius of 1,835 meters is 86

Physics
1 answer:
likoan [24]3 years ago
7 0

Answer:

v = 134.06 m/s

Explanation:

Given that,

Radius of a circular track is 1,835 m

Time required to complete one lap around a perfectly circular track is 86 seconds

We need to find the car's velocity. Velocity is equal to,

v=d/t

On circular path,

v=\dfrac{2\pi r}{t}\\\\v=\dfrac{2\pi \times 1835}{86}\\\\v=134.06\ m/s

So, car's velocity is 134.06 m/s.

You might be interested in
_____ are formed where bumps from two surfaces come into contact ?
Murrr4er [49]

Answer:

the answer would be microwelds.

3 0
3 years ago
Se lanza una pelota de béisbol desde la azotea de un edificio de 25 m de altura con velocidad inicial de magnitud 10 m/s y dirig
MissTica

Answer:

 v_f = 24.3 m / s

Explanation:

A) In this exercise there is no friction so energy is conserved.

Starting point. On the roof of the building

         Em₀ = K + U = ½ m v₀² + m g y₀

Final point. On the floor

         Em_f = K = ½ m v_f²

         Emo = Em_g

         ½ m v₀² + m g y₀ = ½ m v_f²

        v_f² = v₀² + 2 g y₀

         

let's calculate

        v_f = √(10² + 2 9.8 25)

        v_f = 24.3 m / s

6 0
3 years ago
A mass moves back and forth in simple harmonic motion with amplitude A and period T.
Sever21 [200]

a. 0.5 T

- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position

- The period T is the time the system takes to complete one oscillation

During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.

So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

1 T : 4 A = t : 2 A

and solving for t we find

t=\frac{(1T)(2 A)}{4A}=0.5 T

b. 1.25T

Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that

- the mass takes a time of 1 T to cover a distance of 4A

we can set the following proportion:

1 T : 4 A = t : 5 A

And by solving for t, we find

t=\frac{(1T)(5 A)}{4A}=\frac{5}{4} T=1.25 T

6 0
3 years ago
Does the air exert a buoyant force on all objects in air or only on objects such as balloons that are very light for their size?
Citrus2011 [14]

Answer:

See explanation

Explanation:

Solution:-

Buoyancy is the force that causes objects to float. It is the force exerted on an object that is partly or wholly immersed in a fluid. Buoyancy is caused by the differences in pressure acting on opposite sides of an object immersed in a static fluid. It is also known as the buoyant force. Buoyancy is the phenomena due to Buoyant Force.

It is as an upward force exerted by a fluid that opposes the weight of an object immersed in a fluid. As we know, the pressure in a fluid column increases with depth. Thus, the pressure at the bottom of an object submerged in the fluid is greater than that at the top. The difference in this pressure results in a net upward force on the object which we define as buoyancy.

- The formula for buoyant force (Fb) is given:

                           Fb = ρ*g*V

- The force acts on all objects. However, it depends on the fluid density and amount of volume displaced.

- The Buoyant force exerted by air with density = 1.225 kg/m^3 on an object with volume (V) is:

                          Fb = ρ*g*V = 1.225*9.81*V = 12.02*V

- For the similar object with mass (m), the downward weight would be:

                           W = m*g

- For the object to float the buoyant force (Fb) must be greater than weight of the object:

                          Fb > W

                          12.02*V > m*9.81

                          V / m > 0.816

- The ratio of V / m must be at-least = 0.816.

- Assuming the object is fully immersed in air, then the volume displaced V = ρ_material*V

                         ρ_material < 1 / 0.816

                        ρ_material < 1.225 or ( ρ_air )

- So the for an object to float in air its material density must always be less than that of air. That why in balloons lighter gas is used which have density less than that of air like Helium.          

4 0
3 years ago
A car slams on its breaks,producing friction between the tires and the road.Into which type of energy is the mechanical energy o
Step2247 [10]
The answer is Heat Energy
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which planets are mostly "made of" atmosphere?
    15·2 answers
  • Why do you lurch forward in a bus that suddenly slows? why do you lurch backward when it picks up speed? what law applies here?
    15·1 answer
  • Select the best terms from the drop-down menus that fit the nuclear medicine descriptions.
    9·2 answers
  • When the elevator is mobing upwards but its slowing to a stop at the top floor. what is the direction of the net firce on the ri
    15·1 answer
  • Just before the ball leaves her hand, what is its centripetal acceleration?
    9·1 answer
  • Replication of a research study is most likely to be made easier by
    15·1 answer
  • Substances X and Y are both nonpolar. If the volatility of X is higher than that of Y, what is the best explanation?
    6·2 answers
  • What is the definition of recoil velocity?
    8·2 answers
  • &gt;
    6·1 answer
  • Calculate the speed of a proton after it accelerates from rest through a potential difference of 350 V.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!