According to
Graham's Law ," the rates of effusion or diffusion of two gases are inversely proportional to the square root of their molecular masses at given pressure and temperature".
r₁ / r₂ =

---- (1)
r₁ = Rate of effusion of He
r₂ = Rate of Effusion of O₃
M₁ = Molecular Mass of He = 4 g/mol
M₂ = Molecular Mass of O₃ = 48 g/mol
Putting values in eq. 1,
r₁ / r₂ =

r₁ / r₂ =

r₁ / r₂ =
3.46
Result: Therefore, Helium will effuse
3.46 times more faster than Ozone.
Answer:
we will use the Clausius-Clapeyron equation to estimate the vapour pressures of the boiling ethanol at sea level pressure of 760mmHg:
ln (P2/P1) =
-
)
where
P1 and P2 are the vapour pressures at temperatures T1 and T2
Δ
vapH = the enthalpy of vaporization of the ETHANOL
R = the Universal Gas Constant
In this problem,
P
1
=
100 mmHg
; T
1
=
34.7 °C
=
307.07 K
P
2
=
760mmHg
T
2
=T⁻²=?
Δ
vap
H
=
38.6 kJ/mol
R
=
0.008314 kJ⋅K
-1
mol
-1
ln
(
760/10)=(0.00325 - T⁻²) (38.6kJ⋅mol-1
/0.008314
)
0.0004368=(0.00325 - T⁻²)
T⁻²=0.002813
T² = 355.47K
Answer:
No change...
Explanation:
The law of conservation of mass states that matter cannot be created or destroyed in a chemical reaction. For example, when wood burns, the mass of the soot, ashes, and gases equals the original mass of the charcoal and the oxygen when it first reacted. So the mass of the product equals the mass of the reactant.
<u> Mark as Brainliest please...</u>
Answer:

Explanation:
(a) Balanced equation
2Zn + O₂ ⟶ 2ZnO
(b). Calculation
You want to convert moles of ZnO to moles of Zn
The molar ratio is 2 mol Zn:2 mol ZnO

Answer:
1.8 x 10⁻⁵
Explanation:
NH3(aq) + H2O(l) ⇄ NH4⁺(aq) + OH⁻(aq)
I 0.95 0 0
C -x +x +x
E 0.95-x x x
Kb= [NH₄⁺] [OH⁻] / ( NH₃) = x²/ (0.95-x )
P(OH) = 14-PH = 14-11.612 = 2.388
(OH)⁻¹ = 10⁻²°³⁸⁸ = 4.09 x 10⁻³ = x
Kb = (4.09 x 10⁻³)²/ (0.95-4.09 x 10⁻³)
= 1.8 x 10⁻⁵