Answer:
- The speed will be

Explanation:
We can use the following kinematics equation

where
is the final speed,
its the initial speed, a is the acceleration, and d the distance.
The force will be tripled, the force is:

in 1D

Now, for the original problem, we have



For the second problem, we have

starting from the rest, we have the same initial velocity.


As the force is tripled, we have:


But the mass its the same, so


So the acceleration its also tripled.


As the distance traveled by the arrow must also be the same, we have:





And this will be the speed from the arrow leaving the bow.
Answer:
1.02s
Explanation:
In this situation the following equation will be useful:

Where:
 is Marissa's car final velocity
 is Marissa's car initial velocity
 is Marissa's car constant acceleration (assuming this is the acceleration, since 1269 m/s^{2} does not make sense)
 is the time it takes to accelerato from  to 
in this since your volume remains at a constant you'll need to use Gay-Lussacs law, p1/t1=p2/t2.
your temp should be converted in kelvin
variables:
p1=3.0×10^6 n/m^2
t1= 270k
just add 273 to your celcius
p2= ? your solving for this
t2= 315k
then you set up the equation
(3.0×10^6)/270= (x)(315)
you then cross multiply
(3.0×10^6)315=270x
distribute the 315 to the pressure.
9.45×10^8=270x then you divide 270 o both sides to get
answer
3.5×10^6 n/m^2
horizontal distance of home run is 400 ft = 122 m
height of the home run is 3 ft = 0.9 m
now the angle of the hit is 51 degree
now we have equation of trajectory of the motion


solving above two equations we have

now here we will plug in all data




<em>so the ball was hit with speed 35.1 m/s from the ground</em>
Gravitational Potential Energy GPE = mg∆h. 12. A 5.0 kg mass is initially sitting on the floor when it is lifted onto a table 1.15 meters high at.