A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.
Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
Answer:
Option C.
Impulse = mass × change in velocity
Explanation:
Impulse is defined by the following the following formula:
Impulse = force (F) × time (t)
Impulse = Ft
From Newton's second law of motion,
Force = change in momentum /time
Cross multiply
Force × time = change in momentum
Recall:
Impulse = Force × time
Thus,
Impulse = change in momentum
Recall:
Momentum = mass x velocity
Momentum = mv
Chang in momentum = mass × change in velocity
Change in momentum = mΔv
Thus,
Impulse = change in momentum
Impulse = mass × change in velocity
The Newton is defined as the:
C. Force that can give a 1-kilogram mass an acceleration of 1m/sec squared.
<h3>Hope it helps..</h3>
ray4918 here