1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir2022 [97]
3 years ago
11

How do you use the brakes in an airplane?

Engineering
1 answer:
Paraphin [41]3 years ago
3 0

Answer:

When a pilot pushes the top of the right pedal, it activates the brakes on the right main wheel/wheels, and when the pilot pushes the top of the left rudder pedal, it activates the brake on the left main wheel/wheels. The brakes work in a rather simple way: they convert the kinetic energy of motion into heat energy.

You might be interested in
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
Find E[x] when x is sum of two fair dice?
Ksenya-84 [330]

Answer:

When two fair dice are rolled, 6×6=36 observations are obtained.

P(X=2)=P(1,1)=

36

1

​

P(X=3)=P(1,2)+P(2,1)=

36

2

​

=

18

1

​

P(X=4)=P(1,3)+P(2,2)+P(3,1)=

36

3

​

=

12

1

​

P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=

36

4

​

=

9

1

​

P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=

36

5

​

P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=

36

6

​

=

6

1

​

P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=

36

5

​

P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=

36

4

​

=

9

1

​

P(X=10)=P(4,6)+P(5,5)+P(6,4)=

36

3

​

=

12

1

​

P(X=11)=P(5,6)+P(6,5)=

36

2

​

=

18

1

​

P(X=12)=P(6,6)=

36

1

​

Therefore, the required probability distribution is as follows.

Then, E(X)=∑X

i

​

⋅P(X

i

​

)

=2×

36

1

​

+3×

18

1

​

+4×

12

1

​

+5×

9

1

​

+6×

36

5

​

+7×

6

1

​

+8×

36

5

​

+9×

9

1

​

+10×

12

1

​

+11×

18

1

​

+12×

36

1

​

=

18

1

​

+

6

1

​

+

3

1

​

+

9

5

​

+

6

5

​

+

6

7

​

+

9

10

​

+1+

6

5

​

+

18

11

​

+

3

1

​

=7

E(X

2

)=∑X

i

2

​

⋅P(X

i

​

)

=4×

36

1

​

+9×

18

1

​

+16×

12

1

​

+25×

9

1

​

+36×

36

5

​

+49×

6

1

​

+64×

36

5

​

+81×

9

1

​

+100×

12

1

​

+121×

18

1

​

+144×

36

1

​

=

9

1

​

+

2

1

​

+

3

4

​

+

9

25

​

+5+

6

49

​

+

9

80

​

+9+

3

25

​

+

18

121

​

+4

=

18

987

​

=

6

329

​

=54.833

Then, Var(X)=E(X

2

)−[E(X)]

2

=54.833−(7)

2

=54.833−49

=5.833

∴ Standard deviation =

Var(X)

​

=

5.833

​

=2.415

4 0
2 years ago
Energy.
alexandr402 [8]

Answer:

modern vehicles are made to crunch up a little bit so they that absorbe some of the impact instead of you

Explanation:

8 0
3 years ago
A driver takes 3.5 s to react to a complex situation while traveling at a speed of 60 mi/h. How far does the vehicle travel befo
victus00 [196]

Answer:

x = 93.8 m.

Explanation:

During the entire the reaction time interval, the vehicle continues moving at the same speed that it was moving, i.e., 60 mi/hr.

In order to calculate the distance in meters, travelled at that speed, it is advisable first to convert the 60 mi/hr to m/seg, as follows:

60 mi/hr = 60*\frac{1hr}{3,600s}*\frac{1,605m}{1mi} = 26.8 m/s

Applying the definition of average velocity, we can solve for Δx, as follows:

Δx = 26.8 m/s* 3.5 s = 93.8 m

7 0
3 years ago
Other questions:
  • A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.
    12·1 answer
  • System grounding on a power system means electrically connecting the __?__ of every wye-connected transformer or generator to ea
    12·1 answer
  • The type of current that flows from the electrode across the arc to the work is called what?
    5·1 answer
  • Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the entire lower surfa
    12·1 answer
  • The entire population of a given community is examined, and all who are judged to be free from bowel cancer are questioned exten
    12·1 answer
  • The car travels around the portion of a circular track having a radius of r = 500 ft such that when it is at point A it has a ve
    14·1 answer
  • Design a digital integrator using the impulse invariance method. Find and give a rough sketch of the amplitude response, and com
    15·1 answer
  • Determine the total condensation rate of water vapor onto the front surface of a vertical plate that is 10 mm high and 1 m in th
    8·2 answers
  • The hot-wire anemometer.' A hot-wire anemome ter is essentially a fine wire, usually made of platinum,which is heated electrical
    6·1 answer
  • How do we infer that there is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!