From the ideal gas law, PV = nRT, we can rearrange the equation to solve for T given the other parameters.
T = PV/nR
where P = 0.878 atm, V = 1.20 L, n = 0.0470 moles, and R = 0.082057 L•atm/mol•K. Plugging in our values, we obtain the temperature in Kelvin:
T = (0.878 atm)(1.20 L)/(0.0470 mol)(0.082057 L•atm/mol•K)
T = 273 K
So, the second answer choice would be correct.
<span>Amino acids which are known to be linked by peptide bonds they form polypeptide chains.
Proteins are linear polymers are formed by way of linking an a-carboxy group of one amino acid to a-amino of different amino acids which have peptide bond. The formation which results from two amino acids which result in a loss of a water molecule. The best process of the reaction is hydrolysis.</span>
In the context of multivalent ions, it is when it has multiple oxidative states.
Answer:
47.3 ml
Explanation:
The graduated cylinder is shown in the image attached.
Now we have to take a good look at the cylinder, the lines between 45 and 50 are 46, 47, 48 and 49. Even though the points in between two lines weren't graduated but we can intelligently guess the correct volume by observing the upper meniscus of the liquid. Hence the answer.
Molarity=moles/liter
molarity=43/0.64
molarity=67.19moles/litre