-tanning
-disinfection
-indoor gardening
-air cleaning
-curing inks and resins
<span>To do this question, we need to know that momentum is conserved, meaning the overall velocity of the two balls has to be the same before and after the collision. </span>
<span>After collision... </span>
<span>Ball 1: 4.33m/s *cos 30 = 3.75 m/s (x-component) </span>
<span>4.33m/s * sin 30 = 2.165 m/s ( y-component) </span>
<span>Ball 2 (struck ball): 5 m/s - 3.75m/s = 1.25 m/s (x-component) </span>
<span>-2.165 m/s (y-component) note: it has to be in the opposite direction to conserve momentum </span>
<span>tan-1(2.165/1.25) = 60 degrees </span>
<span>Struck ball's velocity = sqrt(1.25^2 + 2.165^2) = 2.5 m/s at 60 degree with respect to the original line of motion. </span>
<span>Hope you understand!</span>
Then the coin will float on the surface of the liquid in the eishimg well.
Answer:
When the platform rotates, the rotating mass will travel in a circular path due to the force exerted on it by the string (by way of the tension in the spring). Since it is not possible to have an instantaneous readout of this tension force while the platform is rotating, an indirect measurement of this force will be made using the weight of the static mass as shown and explained below.