One of the many random useless factoids that I carry around
in my head is the factoid that 60 miles per hour is equivalent
to exactly 88 feet per second.
So in three seconds at that speed, you would cover exactly
(3 x 88) = 264 feet.
F=MA
F=(8 kg)(9.8 m/s)
F= 78.4 N
W=FD
W=(78.4 N)(7 m)
W=548.8 J
How this helps
1,000 watts = 1 kilowatt
2,000 watts = 2 kilowatts
3,000 watts = 3 kilowatts
4,000 watts = 4 kilowatts
<em>5,000 watts = 5 kilowatts</em>
Explanation:
Work done is the force applied to move a body through a specific or particular direction.
It is also the difference in the amount of energy expended in using an effort.
Work done is given as;
Work done = F x d CosФ
F is the force applied
d is the displacement
Ф is the angle
The unit of work done is in Joules.
1. Based on Scenario A, multiple frames will minimize re-transmission overhead and should be preferred in the encapsulation of packets.
2. Based on Scenario B, the encapsulation of packets should be in a single frame because of the high level of network reliability and accuracy.
<u>Justification:</u>
There will not be further need to re-transmit the packets in a highly reliable and accurate network environment, unlike in an environment that is very prone to errors. The reliable and accurate network environment makes a single frame economically better.
Encapsulation involves the process of wrapping code and data together within a class so that data is protected and access to code is restricted.
With encapsulation, each layer:
- provides a service to the layer above it
- communicates with a corresponding receiving node
Thus, in a reliable and accurate network environment, single frames should be used to enhance transmission and minimize re-transmission overhead. This is unlike in an environment that is very prone to errors, where multiple frames should rather be used to minimize re-transmission overhead.
Learn more about encapsulation of packets here: brainly.com/question/22471914