1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
2 years ago
10

Paying off your debts will most likely

Physics
1 answer:
g100num [7]2 years ago
4 0
I think the answer is d
You might be interested in
Two large conducting parallel plates A and B are separated by 2.4 m. A uniform field of 1500 V/m, in the positive x-direction, i
Lapatulllka [165]

Answer:

a. 1.027 x 10^7 m/s b. 3600 V c. 0 V and d. 1.08 MeV

Explanation:

a. KE =1/2 (MV^2) where the M is mass of electron

b. E = V/d

c. V= 0 V (momentarily the pd changes to zero)

d KE= 300*3600 v = 1.08 MeV

6 0
3 years ago
Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure P and the volume V satisfy th
jarptica [38.1K]

Answer: The volume is decreasing at a rate of 80 cm3/min

Explanation: Please see the attachments below

8 0
3 years ago
What is a good activity for strengthening your stomach muscles?
koban [17]

Answer:

sit-ups

Explanation:

3 0
3 years ago
Read 2 more answers
Three point charges are placed on the x−y plane: a + 50.0-nC charge at the origin, a −50.0-nC charge on the x axis at 10.0 cm, a
butalik [34]

Answer:

(a) F = 0.00322i - 0.00793j with magnitude |F| = 0.00856N

(b) E = -42846.7 N/C

Explanation:

The diagram attached below explains some parameters.

Parameters given:

Charge Q1 = +50 nC at point (0, 0)

Charge Q2 = -50 nC at point (0.1, 0)

Charge Q3 = +150 nC at point (0.1, 0.08)

* The distances are in meters.

(a) The total electric force on the charge Q3 due to Q1 and Q2 is the vector sum of the forces due to Q1 and Q2. Mathematically,

F = F1 + F2

FORCE DUE TO Q1 i.e. F(Q1, Q3)

We have to find the x and y components.

From the diagram, we can find θ using SOHCAHTOA:

θ = tan⁻¹ (0.08/0.1)

θ = 38.66⁰

The distance between Q1 and Q3 can be found using Pythagoras theorem:

x² = 0.08² + 0.1²

x = 0.128 m

F1 = Fx(Q1, Q3)i + Fy(Q1, Q3)j

F1 = iF(Q1, Q3)cosθ + jF(Q1, Q3)sinθ

F(Q1, Q3) = (k * Q1 * Q3) / r²

k = Coulombs constant

F(Q1, Q3) = (9 * 10⁹ * 50 * 10⁻⁹ * 150 * 10⁻⁹) /(0.128)²

F(Q1, Q3) = 0.00412N

F1 = i0.00412 * cos38.66 + j0. 00412 * sin38.66

F1 = 0.00322i + 0.00257j N

FORCE DUE TO Q2 i.e. F(Q2, Q3)

We have to find the x and y components.

F2 = Fx(Q2, Q3)i + Fy(Q2, Q3)j

F2 = iF(Q2, Q3)cos90 + jF(Q2, Q3)cos0

F(Q2, Q3) = (k * Q2 * Q3) / r²

F(Q2, Q3) = (9 * 10⁹ * -50 * 10⁻⁹ * 150 * 10⁻⁹) /(0.08)²

F(Q2, Q3) = -0.0105N

F2 = -i0.0105 * cos90 - j0.0105 * cos0

F2 = - 0.0105j N

Hence, the total force will be

F = F1 + F2

F = 0.00322i + 0.00257j - 0.0105j

F = 0.00322i - 0.00793j N

The magnitude of this force is:

|F| = √(0.00322² + (-0.00793²)

|F| = 0.00856N

(b) The electric field at charge Q3 is the sum of the electric fields due to Q1 and Q2:

E = E1 + E2

E1, electric field due to Q1 = kQ1/r²

E1 = (9 * 10⁹ * 50 * 10⁻⁹) / (0.128²)

E1 = 27465.8 N/C

E2, electric field due to Q2 = (9 * 10⁹ * -50 * 10⁻⁹) / (0.08²)

E1 = -70312.5N/C

The total electric field:

E = E1 + E2

E = 27465.8 - 70312.5

E = -42846.7 N/C

3 0
3 years ago
A 2000 kg truck is traveling at 5 m/s and collides with a 1000 kg car that is not moving. After the collision, the 2000 truck st
sp2606 [1]

Answer:

A) 10 m/s

Explanation:

We know that according to conservation of momentum,

m1v1 + m2v2 = m1u1 + m2u2  ..............(equation 1)

where m1 and m2 are masses of two bodies, v1 and v2 are initial velocity before collision and u1 and u2 are final velocities after collision respectively.

From the given data

If truck and car are two bodies

truck :       m1 = 2000 Kg           v1 = 5 m/s                u1 = 0

car    :        m2 = 1000 kg           v2 = 0                      u2 = ?

final velocity of truck and initial velocity of car are static because the objects were at rest in the respective time.

substituting the values in equation 1, we get

(2000 x 5) + 0 = 0 + (1000 x u2)

u2 = \frac{2000}{1000} x 5

    = 10 m/s

Hence after collision, car moves at a velocity of 10 m/s

3 0
3 years ago
Other questions:
  • 1. Tonya had a hard time deciding between the Big Burger and the Crispy Chicken sandwiches, her two favorites.
    15·1 answer
  • Two large, flat, horizontally oriented plates are parallel to each other, a distance d apart. Half way between the two plates th
    11·1 answer
  • In order to get the bike to move and stay moving, what friction must be overcome
    9·1 answer
  • The law of conservation of energy applies:
    14·1 answer
  • A car driving at a constant speed of 64 mi/h travels 68 miles. How many hours did this take?
    15·1 answer
  • What is a sharp ridge separating two cirques
    12·1 answer
  • Give 10 examples of units you might use or see in any given day
    6·1 answer
  • A student is watching waves come in from the ocean. He noticed that the first wave he saw (Wave A) had twice the amplitude of th
    9·1 answer
  • Atoms with certain characteristics are radioactive. Which of those below will
    7·1 answer
  • Force Problem: Four concurrent forces are applied to a 5 Kg mass: 50 N North, 25 N East, 35 N South, and 35 N West.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!