Answer:
given,
mass of the skier = 70.1 Kg
angle with horizontal, θ = 8.6°
magnitude of the force,F = ?
a) Applying newton's second law
velocity is constant, a = 0



b) now, when acceleration, a = 0.135 m/s²
velocity is constant, a = 0.135 m/s₂



<span>1) Explain how the particles that make up solid matter can be in perpetual motion if they do not change position. Answer: they do not mov, just vibrate a bit more and move further apart. And as a result solid expand a bit.
</span><span>2) How the Kinetic Theory of Matter defines heat. Answer: Heat is a form of energy that particles convert into kinetic energy. Adding a heat energy increases the kinetic energy of particles. This means that as a substance is heated - the particles vibrate faster and move further apart. </span>
D. compost bins because they recycle matter into a new form
Explanation:
- The law of conservation of matter is about the creation and how matter is being transferred. According to the law, the matter cannot be destroyed. The matter should always be transferred from one form to another in the universe. There is never destruction of matter happens. There is also one more point to it, as it cannot be destroyed it also cannot be created.
- Here in the options, option A tells us the creation which is not possible, option B says about the destruction of matter which is not true according to the law, C is about storing the matter which will not happen because its get transferred and D is the correct option because it talks about the recycle/ transfer of matter.
The impact speed will be
v^2 = 2*9.8*1.3
v^2 = 25.48
v= 5.04 m/s
Answer:
A) 1.4167 × 10^(-11) F
B) r_a = 0.031 m
C) E = 3.181 × 10⁴ N/C
Explanation:
We are given;
Charge;Q = 3.40 nC = 3.4 × 10^(-9) C
Potential difference;V = 240 V
Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m
A) The formula for capacitance is given by;
C = Q/V
C = (3.4 × 10^(-9))/240
C = 1.4167 × 10^(-11) F
B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.
C = (4πε_o)/(1/r_a - 1/r_b)
Rearranging, we have;
(1/r_a - 1/r_b) = (4πε_o)/C
ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m
Plugging in the relevant values, we have;
(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))
(1/r_a) - 24.3902 = 7.8501
1/r_a = 7.8501 + 24.3902
1/r_a = 32.2403
r_a = 1/32.2403
r_a = 0.031 m
C) Formula for Electric field just outside the surface of the inner sphere is given by;
E = kQ/r_a²
Where k is a constant value of 8.99 × 10^(9) Nm²/C²
Thus;
E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²
E = 3.181 × 10⁴ N/C