Instantaneous impulse and continuous force: these are the foundations of Newton laws. In short explanation; concept of force and mass.
Before going to answer this question first we have to know the fundamental principle of magnetism.
A magnet have two poles .The important characteristic of a magnet is that like poles will repel each other while unlike poles will attract each other.
Through this concept the question can be answered as explained below-
A-As per first option the side of magnet A is repelled by the south pole of magnet B. Hence the pole of a must be south .It can't be north as it will lead to attraction.
B-The side of magnet A is repelled by the north pole of magnet B. Hence the side of A must be north pole.It can't be a south pole.
C-The side of magnet A is attracted by the south pole of magnet B .Hence the side of magnet A must be north.Hence this is right
D-The side of magnet A is attracted by the north pole of magnet B. Hence the side of A must south.It can't be north as it will lead to repulsion.
Hence the option C is right.
Inertia is defined as the property of matter by which causes it to resist changes in its state of motion such as changes in velocity. From the given options above, the option that has the greatest inertia would be option B. A jet airliner.
To solve this problem it is necessary to apply the concepts related to acceleration due to gravity, as well as Newton's second law that describes the weight based on its mass and the acceleration of the celestial body on which it depends.
In other words the acceleration can be described as

Where
G = Gravitational Universal Constant
M = Mass of Earth
r = Radius of Earth
This equation can be differentiated with respect to the radius of change, that is


At the same time since Newton's second law we know that:

Where,
m = mass
a =Acceleration
From the previous value given for acceleration we have to

Finally to find the change in weight it is necessary to differentiate the Force with respect to the acceleration, then:




But we know that the total weight (F_W) is equivalent to 600N, and that the change during each mile in kilometers is 1.6km or 1600m therefore:


Therefore there is a weight loss of 0.3N every kilometer.