Answer:
<h2>Part A)</h2><h2>Acceleration of the ball is 10.1 m/s/s</h2><h2>Part B)</h2><h2>the final speed of the ball is given as</h2><h2>

</h2>
Explanation:
Part a)
As we know that drag force is given as






so we have


So acceleration of the ball is



Part B)
As per kinematics we know that



Answer:
Distance = 6.667 kilometres
Explanation:
Given the following data;
Speed = 20 km/h
Departure time = 7:00
Arrival time = 7:20
Time taken = 20 minutes
To calculate the distance travelled from home to school;
First of all, we would have to convert the value of time in minutes to hours.
Conversion:
60 minutes = 1 hour
20 minutes = X hours
Cross-multiplying, we have;
X = 20/60 = 1/3 hours
Mathematically, the distance travelled by an object is calculated by using the formula;
Distance = speed * time
Distance = 20 * 1/3
Distance = 20/3 =
Distance = 6.667 kilometres
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.
No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".
answer C is the correct one