Answer:
1 gram of H2 will be produced from 12 grams of Mg.
Explanation:
According to Stoichiometry, 0.5 moles of Mg are present. 1 mole of Mg produces 1 mole of H2, so 0.5 moles of Mg will produce 0.5 moles of H2. Multiplying molar mass of H2 i.e. 2 gram/mole with 0.5 moles, we can find the mass of H2 in grams which is 1 gram.
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
The two elements that produce background radiation on earth are Radon and Uranium. Airborne radon can decay on its own. Radon undergoes alpha decay to produce Polonium. Uranium naturally undergoes alpha decay to produce Thorium.