Answer:
Hello your question is poorly written below is the complete question
Suppose the battery in a clock wears out after moving Ten thousand coulombs of charge through the clock at a rate of 0.5 Ma how long did the clock run on does battery and how many electrons per second slowed?
answer :
a) 231.48 days
b) n = 3.125 * 10^15
Explanation:
Battery moved 10,000 coulombs
current rate = 0.5 mA
<u>A) Determine how long the clock run on the battery. use the relation below</u>
q = i * t ----- ( 1 )
q = charge , i = current , t = time
10000 = 0.5 * 10^-3 * t
hence t = 2 * 10^7 secs
hence the time = 231.48 days
<u>B) Determine how many electrons per second flowed </u>
q = n*e ------ ( 2 )
n = number of electrons
e = 1.6 * 10^-19
q = 0.5 * 10^-3 coulomb ( charge flowing per electron )
back to equation 2
n ( number of electrons ) = q / e = ( 0.5 * 10^-3 ) / ( 1.6 * 10^-19 )
hence : n = 3.125 * 10^15
Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K
Answer:

Explanation:
Let the linear charge density of the charged wire is given as

here we can use Gauss law to find the electric field at a distance r from wire
so here we will assume a Gaussian surface of cylinder shape around the wire
so we have

here we have


so we have

for a given type of wave in a given medium a larger frequency means a smaller wavelength