Answer:
Explanation:
A ) angular velocity ω = 2π / T
= 2 x 3.14 / 60
= .10467 rad / s
linear velocity v = ω R
= .10467 x 50
= 5.23 m / s
centripetal force = m v² / R
= mg v² / gR
= 834 x 5.23² / 9.8 x 50
= 46.55 N
B )
apparent weight
= mg - centripetal force
= 834 - 46.55
= 787.45 N
C ) apparent weight
= mg + centripetal force
= 834 + 46.55
= 880.55 N.
D )
For apparent weight to be zero
centripetal force = mg
mg = mv² / R
v² = gR
= 9.8 x 50
= 490
v = 22.13 m /s
time period of revolution
= 2π R /v
2 x 3.14 x 50 / 22.13
= 14.19 s
The temperature of the water and the and the salinity of water
Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s