Answer:
the force acting on the team mate is 1.19 kN.
Explanation:
given,
mass = 196 lbm
while tackling, the deceleration is from velocity 6.7 m/s to 0 m/s
time taken for deceleration = 0.5 sec
F = mass × acceleration
acceleration =
= -13.4 m/s²
1 lbs = 0.453 kg
196 lbs = 196 × 0.453 = 88.79 kg
F = 88.79 × 13.4
F = 1189.786 N = 1.19 kN
hence, the force acting on the team mate is 1.19 kN.
I attached the requested diagram.
<em>In the case of the magnetic field in a bar</em> by convention, the direction of the field is taken out of the north pole and towards the south pole of the magnet. These types of images are commonly made of some ferrous material.
<em>In the case of the horseshoe </em>magnet, the highly concentrated magnetic field is distinguished between its legs. In the figure it is shown in a contribution from North to South, again by agreement, however outside the two poles, the magnetic field falls rapidly. A horseshoe magnet is basically a bent bar magnet.
Answer: 
Explanation:
Given
Cross-sectional area 
Dielectric constant 
Dielectric strength 
Distance between capacitors 
Maximum charge that can be stored before dielectric breakdown is given by
![\Rightarrow Q=CV\\\\\Rightarrow Q=\dfrac{k\epsilon_oA}{d}\cdot (Ed)\quad\quad [V=E\cdot d]\\\\\Rightarrow Q=k\epsilon_oAE\\\\\Rightarrow Q=4\times 8.85\times 10^{-12}\times 0.4\times 10^{-4}\times 2\times 10^8\\\\\Rightarrow Q=28.32\times 10^{-8}\\\\\Rightarrow Q=283.2\times 10^{-9}\ nC](https://tex.z-dn.net/?f=%5CRightarrow%20Q%3DCV%5C%5C%5C%5C%5CRightarrow%20Q%3D%5Cdfrac%7Bk%5Cepsilon_oA%7D%7Bd%7D%5Ccdot%20%28Ed%29%5Cquad%5Cquad%20%5BV%3DE%5Ccdot%20d%5D%5C%5C%5C%5C%5CRightarrow%20Q%3Dk%5Cepsilon_oAE%5C%5C%5C%5C%5CRightarrow%20Q%3D4%5Ctimes%208.85%5Ctimes%2010%5E%7B-12%7D%5Ctimes%200.4%5Ctimes%2010%5E%7B-4%7D%5Ctimes%202%5Ctimes%2010%5E8%5C%5C%5C%5C%5CRightarrow%20Q%3D28.32%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5C%5CRightarrow%20Q%3D283.2%5Ctimes%2010%5E%7B-9%7D%5C%20nC)
Answer:
D: A mathematical model
<em>Hope </em><em>its right </em><em>if</em><em> </em><em>not </em><em>so </em><em>sorry </em><em>:</em><em>)</em>
In position A
<em>The</em><em> </em><em>mirror </em><em>has</em><em> </em><em>to</em><em> </em><em>be</em><em> </em><em>observed</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>ray</em><em> </em><em>reflected</em><em> </em><em>from</em><em> </em><em>the</em><em> </em><em>mi</em><em>rror</em><em>.</em>
<em>Since</em><em> </em><em>the</em><em> </em><em>the</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>reflec</em><em>tion</em><em> </em><em>is</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>incidence</em><em>,</em><em> </em><em>the</em><em> </em><em>reflected</em><em> </em><em>ray</em><em> </em><em>must</em><em> </em><em>be</em><em> </em><em>in</em><em> </em><em>equal</em><em> </em><em>path</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>incident</em><em> </em><em>ray</em><em>.</em>
<em>That</em><em> </em><em>phenomenon</em><em> </em><em>is</em><em> </em><em>only</em><em> </em><em>in</em><em> </em><em>diagram</em><em> </em><em>A</em>