Spring C stretches 100 cm.
Explanation:
The spring constant is simply the stiffness of the spring. The higher the spring constant the more stiff the spring is.
Spring constant shows the force needed to stretch a spring from it's equilibrium position. If a material requires more force to cause it to stretch, it will have a high spring constant.
According to hooke's law "the force needed to extended an elastic material is directly proportional to its extension"
F = ke
k is the spring constant
e is the extension
We see that the spring that stretches by 100 is the less stiff compared to other springs. It has the smallest spring constant.
Learn more;
Force brainly.com/question/8882476
#learnwithBrainly
Answer:
Volcanic eruptions cool down the planet
Explanation:
Volcanic eruptions actually cool the planet because the particles ejected from volcanoes shade incoming solar radiation. ... The small ash and aerosol particles decrease the amount of sunlight reaching the surface of the Earth and lower average global temperatures.
Hope this helps!!! :D
Answer:
<h3>1.01 s</h3>
Explanation:
Using the equation of motion S = ut+1/2gt² to solve the problem where;
u is the initial velocity of the chocolate = 0m/s
t is the time taken
g is the acceleration due to gravity = 9.81m/s²
S is the height of fall = 5.0m
Substituting the given parameter into the formula to get the time t we have;
5 = 0(t)+1/2(9.81)t²
5 = 4.905t²
t² = 5/4.905
t² = 1.019
t = √1.019
t = 1.009 secs
<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value ![v_2 = 4 \sqrt{10} \ m/s](https://tex.z-dn.net/?f=v_2%20%20%3D%20%204%20%5Csqrt%7B10%7D%20%5C%20%20m%2Fs)
Explanation:
From the question we are told that
The charge on the first sphere is ![q_1 = 2\mu C = 2*10^{-6} \ C](https://tex.z-dn.net/?f=q_1%20%20%3D%20%202%5Cmu%20C%20%20%3D%20%202%2A10%5E%7B-6%7D%20%5C%20%20C)
The charge on the second sphere is ![q_2 = 8 \mu C = 8*10^{-6} \ C](https://tex.z-dn.net/?f=q_2%20%3D%20%208%20%5Cmu%20C%20%3D%208%2A10%5E%7B-6%7D%20%5C%20%20C)
The mass of the second charge is ![m = 1.50 \ g = 1.50 *10^{-3} \ kg](https://tex.z-dn.net/?f=m%20%20%3D%20%201.50%20%5C%20%20g%20%20%3D%20%201.50%20%2A10%5E%7B-3%7D%20%5C%20kg)
The distance apart is ![d = 0.4 \ m](https://tex.z-dn.net/?f=d%20%3D%20%200.4%20%5C%20%20m)
The speed of the second sphere is ![v_1 = 20 \ ms^{-1}](https://tex.z-dn.net/?f=v_1%20%20%3D%20%2020%20%5C%20%20ms%5E%7B-1%7D)
Generally the total energy possessed by when
and
are separated by
is mathematically represented
![Q = KE + U](https://tex.z-dn.net/?f=Q%20%3D%20%20KE%20%2B%20U)
Here KE is the kinetic energy which is mathematically represented as
![KE = \frac{1 }{2} m (v_1)^2](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B1%20%7D%7B2%7D%20%20m%20%28v_1%29%5E2)
substituting value
![KE = \frac{1 }{2} * ( 1.50 *10^{-3}) (20 )^2](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B1%20%7D%7B2%7D%20%20%2A%20%28%201.50%20%2A10%5E%7B-3%7D%29%20%2820%20%29%5E2)
![KE = 0.3 \ J](https://tex.z-dn.net/?f=KE%20%20%3D%20%200.3%20%5C%20%20J)
And U is the potential energy which is mathematically represented as
![U = \frac{k * q_1 * q_2 }{d }](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cfrac%7Bk%20%2A%20%20q_1%20%2A%20%20q_2%20%20%7D%7Bd%20%7D)
substituting values
![U = \frac{9*10^9 * 2*10^{-6} * 8*10^{-6} }{0.8 }](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cfrac%7B9%2A10%5E9%20%2A%20%202%2A10%5E%7B-6%7D%20%2A%208%2A10%5E%7B-6%7D%20%20%7D%7B0.8%20%7D)
![U = 0.18 \ J](https://tex.z-dn.net/?f=U%20%20%3D%20%200.18%20%5C%20%20J)
So
![Q = 0.3 + 0.18](https://tex.z-dn.net/?f=Q%20%3D%20%200.3%20%2B%20%200.18)
![Q = 0.48 \ J](https://tex.z-dn.net/?f=Q%20%3D%20%200.48%20%5C%20%20J)
Generally the total energy possessed by when
and
are separated by
is mathematically represented
![Q_f = KE_f + U_f](https://tex.z-dn.net/?f=Q_f%20%3D%20%20KE_f%20%2B%20U_f)
Here
is the kinetic energy which is mathematically represented as
![KE_f = \frac{1 }{2} m (v_2^2](https://tex.z-dn.net/?f=KE_f%20%20%3D%20%20%5Cfrac%7B1%20%7D%7B2%7D%20%20m%20%28v_2%5E2)
substituting value
![KE_f = \frac{1 }{2} * ( 1.50 *10^{-3}) (v_2 )^2](https://tex.z-dn.net/?f=KE_f%20%20%3D%20%20%5Cfrac%7B1%20%7D%7B2%7D%20%20%2A%20%28%201.50%20%2A10%5E%7B-3%7D%29%20%28v_2%20%29%5E2)
![KE_f = 7.50 *10^{ -4} (v_2 )^2](https://tex.z-dn.net/?f=KE_f%20%20%3D%20%207.50%20%2A10%5E%7B%20-4%7D%20%28v_2%20%29%5E2)
And
is the potential energy which is mathematically represented as
![U_f = \frac{k * q_1 * q_2 }{d }](https://tex.z-dn.net/?f=U_f%20%20%3D%20%20%5Cfrac%7Bk%20%2A%20%20q_1%20%2A%20%20q_2%20%20%7D%7Bd%20%7D)
substituting values
![U_f = \frac{9*10^9 * 2*10^{-6} * 8*10^{-6} }{0.4 }](https://tex.z-dn.net/?f=U_f%20%20%3D%20%20%5Cfrac%7B9%2A10%5E9%20%2A%20%202%2A10%5E%7B-6%7D%20%2A%208%2A10%5E%7B-6%7D%20%20%7D%7B0.4%20%7D)
![U_f = 0.36 \ J](https://tex.z-dn.net/?f=U_f%20%20%3D%20%200.36%20%5C%20%20J)
From the law of energy conservation
![Q = Q_f](https://tex.z-dn.net/?f=Q%20%3D%20%20Q_f)
So
![0.48 = 0.36 +(7.50 *10^{-4} v_2^2)](https://tex.z-dn.net/?f=0.48%20%3D%20%200.36%20%2B%287.50%20%2A10%5E%7B-4%7D%20v_2%5E2%29)
![v_2 = 4 \sqrt{10} \ m/s](https://tex.z-dn.net/?f=v_2%20%20%3D%20%204%20%5Csqrt%7B10%7D%20%5C%20%20m%2Fs)
Answer:
ω = 12.023 rad/s
α = 222.61 rad/s²
Explanation:
We are given;
ω0 = 2.37 rad/s, t = 0 sec
ω =?, t = 0.22 sec
α =?
θ = 57°
From formulas,
Tangential acceleration; a_t = rα
Normal acceleration; a_n = rω²
tan θ = a_t/a_n
Thus; tan θ = rα/rω² = α/ω²
tan θ = α/ω²
α = ω²tan θ
Now, α = dω/dt
So; dω/dt = ω²tan θ
Rearranging, we have;
dω/ω² = dt × tan θ
Integrating both sides, we have;
(ω, ω0)∫dω/ω² = (t, 0)∫dt × tan θ
This gives;
-1[(1/ω_o) - (1/ω)] = t(tan θ)
Thus;
ω = ω_o/(1 - (ω_o × t × tan θ))
While;
α = dω/dt = ((ω_o)²×tan θ)/(1 - (ω_o × t × tan θ))²
Thus, plugging in the relevant values;
ω = 2.37/(1 - (2.37 × 0.22 × tan 57))
ω = 12.023 rad/s
Also;
α = (2.37² × tan 57)/(1 - (2.37 × 0.22 × tan 57))²
α = 8.64926751525/0.03885408979 = 222.61 rad/s²