1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Usimov [2.4K]
3 years ago
9

A school bus takes 0.53 hours to reach the school from your house. If the average speed of the bus is 19km/h, what is the displa

cement of the bus during the trip?
Physics
2 answers:
Artist 52 [7]3 years ago
5 0
D = v*t= 19*0,53 = 10.07 km
Harlamova29_29 [7]3 years ago
4 0

Answer:

The displacement of the bus during the trip is 10.07 km.

Explanation:

Given that,

Time = 0.53 h

Average speed of bus = 19 km/h

We need to calculate the displacement of the bus

Using formula of average velocity

v_{av}=\dfrac{D}{t}

D = v_{avg}\times t

Where, D = displacement

t = time

Put the value into the formula

D=19\times0.53

D=10.07\ km

Hence, The displacement of the bus during the trip is 10.07 km.

You might be interested in
The following is the longitudinal characteristic equation for an F-89 flying at 20,000 feet at Mach 0.638. The Short Period natu
BartSMP [9]

Answer:

hello your question is incomplete  attached below is the missing part  

answer : short period oscillations frequency  = 0.063 rad / sec

              phugoid oscillations natural frequency ( w_{np} ) = 4.27 rad/sec

Explanation:

first we have to state the general form of the equation

= ( S^2 + 2\alpha _{p} w_{np} S + w^{2} _{np} ) (S^{2} + 2\alpha _{s} w_{ns}S + w^{2} _{ns}  ) = 0

where :

w_{np}  = Natural frequency of plugiod oscillation

\alpha _{p} = damping ratio of plugiod  oscilations

comparing the general form with the given equation

w^{2} _{np}  = 18.2329

w^{2} _{ns} = 0.003969

hence the short period oscillation frequency ( w_{ns} ) =  0.063 rad/sec

phugoid oscillations natural frequency ( w_{np} ) = 4.27 rad/sec

8 0
3 years ago
A spring stretches by 0.0208 m when a 3.39-kg object is suspended from its end. How much mass should be attached to this spring
sashaice [31]

Answer:

COMPLETE QUESTION

A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?

Explanation:

Given that,

Extension of spring

x = 0.0208m

Mass attached m = 3.39kg

Additional mass to have a frequency f

Let the additional mass be m

Using Hooke's law

F= kx

Where F = W = mg = 3.39 ×9.81

F = 33.26N

Then,

F = kx

k = F/x

k = 33.26/0.0208

k = 1598.84 N/m

The frequency is given as

f = ½π√k/m

Make m subject of formula

f² = ¼π² •(k/m

4π²f² = k/m

Then, m4π²f² = k

So, m = k/(4π²f²)

So, this is the general formula,

Then let use the frequency above

f = 3Hz

m = 1598.84/(4×π²×3²)

m = 4.5 kg

4 0
3 years ago
A child of mass 40.0 kg is in a roller coaster car that travels in a loop of radius 7.00 m. at point a the speed of the car is 1
pav-90 [236]
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part A
For point A we have:
F_a=F_cf-F_g
In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
F_a=m\frac{v^2}{r}-mg=179 $N
Part B
At the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
F=F_{cf}\cos(30)-mg=m\frac{v^2}{r}\cos(30)-mg=153.2$N
Part C
The child will stay in place at point A when centrifugal force and force of gravity are in balance:
F_g=F_{cf}\\
mg=m\frac{v^2}{r}\\
gr=v^2\\
v=\sqrt{gr}=8.29\frac{m}{s}

6 0
3 years ago
HEY CAN ANYONE HELP ME OUT IN DIS RQ!!!!!!
shusha [124]

Answer:

40 laps

Explanation:

400/10=40

8 0
3 years ago
A student conducts an experimenting to test how the temperature of a ball affects its bounce height. The same ball is used for e
uysha [10]

the independent variable is what you're testing or changing in an experiment, so the answer is the temperature of the ball when its dropped.

i hope that helped <3

3 0
2 years ago
Read 2 more answers
Other questions:
  • Slow moving vehicles that travel at a speed less than ___ mph will have an orange reflective triangle with red around the edges
    7·1 answer
  • A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 3 seconds, coasts for 2 s, and then slows down at a rate o
    14·1 answer
  • Rank the vector combinations on the basis of their magnitude.
    11·1 answer
  • A car travels 30 km north in 25 min. and 40 km east in 35 min. What is the total time in hours? Be careful to carry over the pro
    6·2 answers
  • A 2290 kg car traveling at 10.5 m/s collides with a 2780 kg car that is initially at rest at the stoplight. The cars stick toget
    9·1 answer
  • A nerve signal is transmitted through a neuron when an excess of Na+ ions suddenly enters the axon, a long cylindrical part of t
    10·1 answer
  • A crossbow:
    7·1 answer
  • Which of the following sequences correctly displays the energy transformation from the inside of a battery to the igniter inside
    12·1 answer
  • 20) A 5 Kg watermelon is dropped off a 10 meter balcony. What will the watermelon's velocity be right before it hits the ground?
    6·1 answer
  • a thin prism of 2 degree gives a deviation of 1.7 degree what is the refractive index of the material​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!