Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.
Answer:
7.2 cm
Explanation:
magnetic field, B = 0.301 T
speed, v = 7.92 x 10^5 m/s
mass, m = 4.39 x 10^-27 kg
q = 1.6 x 10^-19 C
The radius of singly changed ion is given by

where, m is the mass of ion, v be the speed of ion, B is the magnetic field and q be the charge

r = 0.072 m
r = 7.2 cm
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Centimeters Measurements:
- A centimeter is a metric unit of measurement used for measuring the length of an object, It is written as cm
- Centimeter is one hundredth of a meter, 1 meter is 0.01 cm.
Inches measurements:
- An inch can be defined as a unit of length in the customary system of measurement. Length in inches is either represented by in or ''.
- 1 meter is equal to 39.37 inches
here, the cars are small objects.
The number of centimeters is always bigger,
because a centimeter unit is smaller than an inch unit, and it takes more of them when we are measuring.
Hence,
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Learn more about accurate measurement here:
<u>brainly.com/question/4119127</u>
<u />
#SPJ4
Answer:
D) All of these
Explanation:
The magnetic flux through a coil of wire is given by:

where
B is the intensity of the magnetic field
A is the area enclosed by the coil
is the angle between the direction of B and the normal to the area of the coil
Therefore, we see that the magnetic flux depends on all these quantities:
A) the magnetic field
B)the orientation of the field with respect to the region through which it passes
C)the area of a region through which magnetic field passes
So, the correct answer is
D) All of these
Hello! :)

Use the kinematic equation below to solve for the height of the building:

Where:
d = distance, or height of the building (m)
a = acceleration due to gravity (9.8 m/s²)
t = time (seconds)
Plug in the given values into the equation:
