Answer:
The volume that the sample of oxygen would occupy at 25 ° C if the pressure were reduced to 760.0 torr is 40.2 L
Explanation:
Boyle's law establishes the relationship between the pressure and the volume of a gas when the temperature is constant, so that the pressure of a gas in a closed container is inversely proportional to the volume of the container. That is, if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Considering an initial state 1 and a final state 2, it is true:
P1* V1= P2*V2
In this case:
- P1= 20.1 L
- V1= 1520 torr
- P2= 760 torr
- V2= ?
Replacing:
20.1 L* 1520 torr= 760 torr* V2
Solving:

V2= 40.2 L
<em><u>The volume that the sample of oxygen would occupy at 25 ° C if the pressure were reduced to 760.0 torr is 40.2 L</u></em>
<em><u></u></em>
Answer:
Al,Ga,B
Explanation:
Now since i helped you can you help me with this plz
Matteo took 5 math quizzes. The mean of the 5 quizzes was 8.2. Here are four of his quiz scores 7, 7, 8, 10. What is the 5th quiz score? Show work.
Answer:
2.14 moles of H₂O₂ are required
Explanation:
Given data:
Number of moles of H₂O₂ required = ?
Number of moles of N₂H₄ available = 1.07 mol
Solution:
Chemical equation:
N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
now we will compare the moles of H₂O₂ and N₂H₄
N₂H₄ : H₂O₂
1 : 2
1.07 : 2×1.07 = 2.14 mol
Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
It wouldn’t be a good idea bc metal absorbs the weather around it. so in florida it would be too hot and in alaska it would be too cold!