1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qwelly [4]
3 years ago
13

Two particles with charges +6e and -6e are initially very far apart (effectively an infinite distance apart). They are then fixe

d at positions that are 5.61 x 10^-12 m apart. What is EPEfinal - EPEinitial, which is the change in the electric potential energy?
Physics
1 answer:
JulijaS [17]3 years ago
4 0

Answer:

\rm EPE_{final}-EPE_{initial}=-1.478\times 10^{-15}\ J.

Explanation:

Given charges are:

\rm q_1 = +6e.\\q_2 = -6e.

The electric potential energy of a charge due to the electric field of another charge is given by

\rm EPE=\dfrac{kq_1q_2}{r}.

where,

  • k = Coulomb's constant, having value = \rm 9\times 10^9\ Nm^2/C^2.
  • r = distance between the charges.

When the charges are infinite distance apart, \rm r = \infty,

\rm EPE_{initial} = \dfrac{kq_1q_2}{r}=0\ J.

When the charges are \rm 5.61\times 10^{-12}\ m apart, \rm r=5.61\times 10^{-12}\ m,

\rm EPE_{final}=\dfrac{kq_1q_2}{r}\\=\dfrac{(9\times 10^9)\times (+6e)\times (-6e)}{5.61\times 10^{-12}}\\=-5.775\ e^2\times 10^{22}.

Here, e is the charge on one electron, such that, \rm e = -1.6\times 10^{-19}\ C.

Therefore,

\rm EPE_{final}=-5.775\times (-1.6\times 10^{-19})^2\times 10^{22} = -1.478\times 10^{-15}\ J.

Thus,

\rm EPE_{final}-EPE_{initial}=-1.478\times 10^{-15}-0=-1.478\times 10^{-15}\ J.

You might be interested in
A bicycle has a momentum of 23.4
Snowcat [4.5K]
  • Momentum=23.4kgm/s
  • Velocity=2m/s

\\ \rm\longmapsto Momentum=Mass\times velocity

\\ \rm\longmapsto Mass=\dfrac{Momentum}{Velocity}

\\ \rm\longmapsto Mass=\dfrac{23.4}{2}

\\ \rm\longmapsto Mass=11.7kg

4 0
3 years ago
Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
frosja888 [35]

Answer:

C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀)  we see that for the same t v₁> v₂

Explanation:

You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.

Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.

Stone 1

    y₁ = v₀₁ t + ½ g t²

    y₁ = 0 + ½ g t²

Rock2

It comes out a little later, let's say a second later, we can use the same stopwatch

     t ’= (t-t₀)

    y₂ = v₀₂ t ’+ ½ g t’²

    y₂ = 0 + ½ g (t-t₀)²

    y₂ = + ½ g (t-t₀)²

Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to

    S = y₁ -y₂

    S = ½ g t²– ½ g (t-t₀)²

    S = ½ g [t² - (t²- 2 t to + to²)]  

    S = ½ g (2 t t₀ - t₀²)

    S = ½ g t₀ (2 t -t₀)

This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.

For t <to.  The rock y has not left and the distance increases

For t> = to.  the ratio (2t/to-1)> 1 therefore the distance increases as time

passes

Now we can analyze the different statements

A) false. The difference in height increases over time

B) False S increases

C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t   v₁> v₂

3 0
4 years ago
For a standard production car, the highest road-tested acceleration ever reported occurred in 1993, when a Ford RS200 Evolution
Ann [662]

Answer:

a = 8.06 m/s²

Explanation:

The acceleration of this car can be found using the first equation of motion:

v_f = v_i + at\\\\a = \frac{v_f-v_i}{t}

where,

a = acceleration = ?

vf = final speed = 26.8 m/s

vi = initial speed = 0 m/s

t = time = 3.323 s

Therefore,

a = \frac{26.8\ m/s-0\ m/s}{3.323\ s}

<u>a = 8.06 m/s²</u>

3 0
3 years ago
Air bags are designed to deploy in 10 ms. Given that the air bags expand 20 cm as they deploy, estimate the acceleration of the
joja [24]

As it is given that the air bag deploy in time

t = 10 ms = 0.010 s

total distance moved by the front face of the bag

d = 20 cm = 0.20 m

Now we will use kinematics to find the acceleration

d = v_i*t + \frac{1}{2}at^2

0.20 = 0 + \frac{1}{2}a*0.010^2

0.20 = 5 * 10^{-5}* a

a = 4000 m/s^2

now as we know that

g = 10 m/s^2

so we have

a = 400g

so the acceleration is 400g for the front surface of balloon

3 0
3 years ago
Would it be true that if you double the distance of an astronaut from a planet, the gravitational pull between them would be hal
velikii [3]

Answer:

Yes

Explanation:

Newton's law of universal gravitation is usually stated that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses(m1 and m2) and inversely proportional to the square of the distance between their centers(r).

F = Gm1m2/r²

This is a general physical law derived from

empirical observations by what Isaac Newton called inductive reasoning.

when distance is doubled the gravitational force will be reduced by quarter not half.

5 0
3 years ago
Read 2 more answers
Other questions:
  • An Athlete is injured on field his teammates see that the injury is moderately swollen in the athlete reports the area is numb w
    7·1 answer
  • A lumberjack (mass = 103 kg) is standing at rest on one end of a floating log (mass = 277 kg) that is also at rest. The lumberja
    15·1 answer
  • LIULIS.<br> What would happen to speed if distance increased in the same amount of time?
    14·1 answer
  • the summer camps had field from the campus to fragrance hill. they traveled at an average speed of 65 km/h in the first 2 hours.
    6·1 answer
  • The most common type of mirage is an illusion that light from faraway objects seem to be reflected by a pool of water that is no
    10·1 answer
  • What is the gain in gravitational potential energy of a body of weight 2000N as it rises from a height of 20m to a height of 25
    8·1 answer
  • A baseball player hits a baseball with a bat. The mass of the ball is 0.25 kg. The ball accelerates at 200 m/s2
    10·1 answer
  • Convert 0.700 to scientific notation
    10·1 answer
  • Help ASAP I’ll mark you as brainlister
    13·1 answer
  • Which of the following helps in designing an attractive 3-D craft?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!