It's equals to zero (a=0)
The perceived frequency when the fire truck is moving toward you and away from you will be 370 Hz and 329.59 Hz respectively.
<h3>What is the Doppler effect?</h3>
A sudden change in the frequency due to the distance between the objects and source is explained by the doppler effect.
As the source and observer travel toward each other, the frequency of sound, light, or other waves increases or decreases.
The perceived frequency when the fire truck is moving toward you;

The perceived frequency when the fire truck is moving away from you;

Hence, the perceived frequency when the fire truck in cases 1 and 2 will be 370 Hz and 329.59 Hz.
To learn more about the doppler effect refer to the link;
brainly.com/question/15318474
#SPJ1
Answer:
The magnitude of the force that the 6.3 kg block exerts on the 4.3 kg block is approximately 41.9 N
Explanation:
Forces on block 4.3 kg are:
63N to the right and R21 (contact force from the 6.3 kg block) to the left
Net force on 4.3 kg block is: 63 N - R21
Forces on the 6.3 kg block are:
R12 to the right (contact force from the 4.3 kg block) and 11 N to the left.
So net force on the 6.3 kg block is: R12 - 11 N
According to the action-reaction principle the contact forces R21 and R12 must be equal in magnitude (let's call them simply "R").
Then, since the blocks are moving with the SAME acceleration, we equal their accelerations:
a1 = (63 N - R)/4.3 = (R - 11 N)/6.3 = a2
solve for R by cross multiplication
6.3 (63 - R) = 4.3 (R - 11)
396.9 - 6.3 R = 4.3 R - 47.3
369.9 + 47.3 = 10.6 R
444.2 = 10.6 R
R = 444.2 / 10.6
R = 41.90 N
227kj Because The first thing to do here is to calculate the energy of a single photon of wavelength equal to
527 nm
, then use Avogadro's number to scale this up to the energy of a mole of such photons.
Average speed = (total distance) / (time to cover the distance)
We know:
Average speed = 65 km/hr
Total distance = 1,000 km
Time to cover it = (Driving Time) + 4 hours.
so we can write:
65 km/hr = (1,000 km) / (Driving Time + 4hr)
(I'm going to start calling the driving time 'DT'.
Notice that DT is a number with the units of 'hours'.)
Multiply each side by (DT + 4hr)
(65 km/hr) (DT + 4hr) = 1,000 km
Eliminate parentheses on the left side:
(65·DT km + 260 km) = 1,000 km
Subtract 260km from each side:
65·DT km = 740 km
Divide each side by 65 :
DT = 11.38 hours .
DT (Driving Time) is the time you spent actually driving.
You had to cover the complete 1,000 km in that time.
So while you were driving, you had to do it at a speed of
1,000 km / 11.38 hrs = 87.8 km/hr .
__________________________________________
As long as we're already totally bored by this question,
let's work on it some more, and check my answer:
... Driving for 11.38 hours at a speed of 87.8 km/hr, you cover
(11.38 hr) x (87.8 km/hr) = 999.164 km (close enough to 1,000) .
So far, so good. The distance is taken care of.
With the 4-hour stop, the total trip takes 4 more hours = 15.38 hours.
So the average speed is
(1,000 km) / (15.38 hr) = 65.02 km/hr
Close enough to 65 km/hr. yay !