Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
The inner planets are closer to the Sun and are smaller and rockier. ... The outer planets are further away, larger and made up mostly of gas. The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars.Apr 23, 2014
If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.
Answer: Option C
<u>Explanation:
</u>
According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:

So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.
Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.
<span>length- roads, yard stick, square footage in a room</span>