Answer:
19
Explanation:
The mass of an atom is found in the nucleus: number of protons + number of neutrons; 9 + 10 = 19
The mass number of fluorine is 19
Let car A's starting position be the origin, so that its position at time <em>t</em> is
A: <em>x</em> = (40 m/s) <em>t</em>
and car B has position at time <em>t</em> of
B: <em>x</em> = 100 m - (60 m/s) <em>t</em>
<em />
They meet when their positions are equal:
(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>
(100 m/s) <em>t</em> = 100 m
<em>t</em> = (100 m) / (100 m/s) = 1 s
so the cars meet 1 second after they start moving.
They are 100 m apart when the difference in their positions is equal to 100 m:
(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m
(subtract car B's position from car A's position because we take car A's direction to be positive)
(100 m/s) <em>t</em> = 200 m
<em>t</em> = (200 m) / (100 m/s) = 2 s
so the cars are 100 m apart after 2 seconds.
Answer:
There is no experiment to prove that you are in motion
Explanation:
A frame of reference which has constant velocity is known as an inertial frame of reference. Motion is relative. One can detect one's motion only when one observes change in position with respect to a fixed body.
Thus, if you are in a spaceship moving at a constant speed in a straight line and unable to look outside, you would not be able to prove that you are moving. Everything within the spaceship would have same speed. If you will throw any object within the spaceship, then the parameters measured by you would also not show that the spaceship is in motion.
Answer:
The pressure corresponding to the absolute zero temperature is 0.997atm.
Explanation:
To solve this question, you draw a straight vertical line with the boiling point temperature and pressure on top of the line and the freezing point temperature and pressure on the lower part. The absolute temperature somewhere in the middle of the line with the pressure to be obtained.
So, we have;
0- (-19) / 100 - (-19) = P - 0.9267 / 1.366 - 0.9267
19 / 119 = P - 0.9267 / 0.4393
Cross multiply, we have
19 * 0.4393 = 119(P -0.9267)
8.3467 = 119P - 110.2773
119P = 118.624
P = 0.997 atm
So at 0°C, the pressure of the thermometer is 0.997atm.