1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
6

A small sphere with mass mcarries a positive chargeqand is attached to one end of a silk fiber of lengthL. The other end of the

fiber is attached to a large vertical insulating sheet that has a positive surface charge densityσ.
a) Find the magnitude and direction of the electric force on the sphere
b) Show that when the sphere is in equilibrium, the fiber makes an angleθequal to arctan (qσ/2mgε0) with the vertical sheet.gis the acceleration due to gravity.

Physics
1 answer:
Aleksandr-060686 [28]3 years ago
6 0

Answer:

(a):  The magnitude of the electric force on the small sphere = \dfrac{q\sigma}{2\epsilon_o}.

(b): Shown below.

Explanation:

<u>Given:</u>

  • m = mass of the small sphere.
  • q = charge on the small sphere.
  • L = length of the silk fiber.
  • \sigma = surface charge density of the large vertical insulating sheet.

<h2>(a):</h2>

When the dimensions of the sheet is much larger than the distance between the charge and the sheet, then, according to Gauss' law of electrostatics, the electric field experienced by the particle due to the sheet is given as:

\rm E = \dfrac{\sigma}{2\epsilon_o}.

<em>where,</em>

\epsilon_o is the electrical permittivity of the free space.

The electric field at a point is defined as the amount of electric force experienced by a unit positive test charge, placed at that point. The magnitude electric field at a point and the magnitude of the electric force on a charge q placed at that point are related as:

\rm F_e=qE.

Thus, the magnitude of the electric force on the small sphere is given by

\rm F_e = q\times \dfrac{\sigma }{2\epsilon_o}=\dfrac{q\sigma}{2\epsilon_o}.

The sheet and the small sphere both are positively charged, therefore, the electric force between these two is repulsive, which means, the direction of the electric force on the sphere is away from the sheet along the line which is perepndicular to the sheet and joining the sphere.

<h2>(b):</h2>

When the sphere is in equilibrium, the tension in the fiber is given by the resultant of the weight of the sphere and the electric force experienced by it as shown in the figure attached below.

According to the fig.,

\rm \tan \theta = \dfrac{F_e}{W}.

<em>where,</em>

  • \rm F_e = electric force on the sphere, acting along left.
  • \rm W = weight of the sphere, acting vertically downwards.

<em />

\rm F_e = \dfrac{q\sigma}{2\epsilon_o}\\\\W=mg\\\\Therefore,\\\\\tan\theta = \dfrac{\dfrac{q\sigma}{2\epsilon_o}}{mg}=\dfrac{q\sigma}{2mg\epsilon_o}.\\\Rightarrow \theta=\tan^{-1}\left ( \dfrac{q\sigma}{2mg\epsilon_o}\right ) .

g is the acceleration due to gravity.

You might be interested in
A person wants to fire a water balloon cannon such that it hits a target 100m100m away. if the cannon can only be launched at 45
vladimir2022 [97]
<span>31.3 m/s Since the water balloon is being launched at a 45 degree angle, the horizontal and vertical speeds will be identical. Also the time the balloon takes to reach its peak altitude will match the time it takes to fall. So let's create a few expressions about what we know. Distance the water balloon travels at velocity v for time t d = vt Total time required for the entire trip is double since the balloon goes up, then goes down t = 2v/a Now let's plug in the numbers we have, assuming the acceleration due to gravity is 9.8 m/s^2 t = 2v/9.8 100 = vt Substitute 2v/9.8 for t in the 2nd formula 100 = v(2v/9.8) Solve for v. 100 = v(2v/9.8) 100 = 2v^2/9.8 980. = 2v^2 490 = v^2 22.13594 = v So we now know that both the horizontal velocity and vertical velocity needed is 22.13594 m/s. Let's verify that 2*22.13594 / 9.8 = 4.51754 So it will take 4.51754 second for the balloon to hit the ground after being launched. 4.51754 * 22.13594 = 100 And during that time it will travel 100 meters horizontally. But we need to know the total velocity. And the Pythagorean theorem comes to the rescue. Just square the 2 velocities, add them together, and take the square root. We already know the square is 490 from the work above, so sqrt(490+490) = sqrt(980) = 31.30495 m/s</span>
3 0
3 years ago
Guys answer with a clear explanation and plzz don't spam.
timama [110]

Answer:

20.7N

Explanation:

There are many students who can not get answers step by step and on time

So there are a wats up group where you can get help step by step and well explained by the trusted experts.

just join the group

post your questions

get answer

3 0
3 years ago
Which is an example of reflection
Elena-2011 [213]

Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected. Mirrors exhibit specular reflection.

5 0
3 years ago
William WangHomework #33 Regents Review (3)0989Assignment Mode : Open (Time On Task) 9 of 25 ListenDuring a collision, an 84-kil
Lemur [1.5K]

Answer:

1.7\cdot 10^3 N

Explanation:

The impulse theorem states that the product between the force and the time interval of the collision is equal to the change in momentum:

F \Delta t = m \Delta v

where

F is the force

\Delta t is the time interval

m is the mass

\Delta v is the change in velocity

Here we have

m = 84 kg

\Delta t = 1.2 s

\Delta v = 24 m/s

So we can solve the equation to find the force:

F= \frac{m \Delta v}{\Delta t }=\frac{(84 kg)(24 m/s)}{1.2 s}=1680 N \sim 1.7\cdot 10^3 N

4 0
3 years ago
How does the flatter design make sweeping the floor easier
Ratling [72]

Answer:

there will be no cracks so the trash won't get stuck

5 0
3 years ago
Other questions:
  • What can I do to increase range of motion in a joint
    8·1 answer
  • A bug walks exactly halfway around the edge of a circular cupcake with a diameter of 5 cm what is the distance he traveled and w
    5·1 answer
  • What two forces are there when you skydive
    6·2 answers
  • A piece of gum is stuck to the outer edge of a horizontal turntable, which is revolving at a constant speed. The shadow of the g
    7·1 answer
  • Two uniform solid cylinders, each rotating about its central (longitudinal) axis, have the same mass of 2.88 kg and rotate with
    8·1 answer
  • A wooden rod of negligible mass and length 84.0 cm is pivoted about a horizontal axis through its center. A white rat with mass
    14·1 answer
  • An underwater mountain system formed by diverging oceanic plates is______
    9·1 answer
  • A 35 N force makes a 10 degree angle with the positive x-axis. What is the magnitude of the vertical component of the force?
    8·2 answers
  • this is a 3 part questionOn vacation, your 1400-kg car pulls a 560-kg trailer away from a stoplight with an acceleration of 1.85
    12·1 answer
  • 2×3.14√(1.0m/(9.8〖ms〗^(-1) )=)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!