1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
2 years ago
8

Suppose we have a laser emitting a diffraction-limited beam (=632 nm) with a 2-mm diameter. How big a light spot from this lase

r would be produced on the surface of the Moon (distance to the Moon is R=376000 km)? Neglect any effects of the Earth’s atmosphere
Physics
1 answer:
expeople1 [14]2 years ago
5 0

Answer:

Explanation:

λ = wave length = 632 x 10⁻⁹

slit width a = 2 x 10⁻³ m

angular separation of central maxima

= 2 x λ /a

= 2 x 632 x 10⁻⁹ / 2 x 10⁻³

= 632 x 10⁻⁶ rad

width in m of light spot.

= 632 x 10⁻⁶  x 376000 km

= 237.632 km

You might be interested in
Do you think there are other planets outside of our solar system? Support your response with facts
Agata [3.3K]


The habitable zone is the range of distances from a star where a planet’s temperature allows liquid water oceans, critical for life on Earth. The earliest definition of the zone was based on simple thermal equilibrium, but current calculations of the habitable zone include many other factors, including the greenhouse effect of a planet’s atmosphere. This makes the boundaries of a habitable zone "fuzzy."



Astronomers announced in August 2016 that they may have found such a planet orbiting Proxima Centauri. The newfound world, known as Proxima b, is about 1.3 times more massive than Earth, which suggests that the exoplanet is a rocky world, researchers said. The planet is also in the star's habitable zone, just 4.7 million miles (7.5 million kilometers) from its host star. It completes one orbit every 11.2 Earth-days. As a result, it's likely that the exoplanet is tidally locked, meaning it always shows the same face to its host star, just as the moon shows only one face (the near side) to Earth.



The young sun would have had a very strong magnetic field, whose lines of force reached out into the disk of swirling gas from which the planets would form. These field lines connected with the charged particles in the gas, and acted like anchors, slowing down the spin of the forming sun and spinning up the gas that would eventually turn into the planets. Most stars like the sun rotate slowly, so astronomers inferred that the same “magnetic braking” occurred for them, meaning that planet formation must have occurred for them. The implication: Planets must be common around sun-like
A Canadian team discovered a Jupiter-size planet around Gamma Cephei in 1988, but because its orbit was much smaller than Jupiter’s, the scientists did not claim a definitive planet detection. “We weren’t expecting planets like that. It was different enough from a planet in our own solar system that they were cautious," Matthews said.
Most of the first exoplanet discoveries were huge Jupiter-size (or larger) gas giants orbiting close to their parent stars. That's because astronomers were relying on the radial velocity technique, which measures how much a star “wobbles” when a planet or planets orbit it. These large planets close in produce a correspondingly big effect on their parent star, causing an easier-to-detect wobble.
Before the era of exoplanet discoveries, instruments could only measure stellar motions down to a kilometer per second, too imprecise to detect a wobble due to a planet. Now, some instruments can measure velocities as low as a centimeter per second, according to Matthews. “Partly due to better instrumentation, but also because astronomers are now more experienced in teasing subtle signals out of the data.”

Today, there are more than 1,000 confirmed exoplanets discovered by a single telescope: the Kepler space telescope, which reached orbit in 2009 and hunted for habitable planets for four years. Kepler uses a technique called the “transit” method, measuring how much a star's light dims when a planet passes in front of it.

Kepler has revealed a cornucopia of different types of planets. Besides gas giants and terrestrial planets, it has helped define a whole new class known as “super-Earths”: planets that are between the size of Earth and Neptune. Some of these are in the habitable zones of their stars, but astrobiologists are going back to the drawing board to consider how life might develop on such worlds.

In 2014, Kepler astronomers (including Matthews’ former student Jason Rowe) unveiled a “verification by multiplicity” method that should increase the rate at which astronomers promote candidate planets to confirmed planets. The technique is based on orbital stability — many transits of a star occurring with short periods can only be due to planets in small orbits, since multiply eclipsing stars that might mimic would gravitationally eject each other from the system in just a few million years.

While the Kepler (and French CoRoT) planet-hunting satellites have ended their original missions, scientists are still mining the data for discoveries, and there are more to come. MOST is still operating, and the NASA TESS (Transiting Exoplanet Survey Satellite), Swiss CHEOPS (Characterizing ExOPlanets Satellite) and ESA’s PLATO missions will soon pick up the transit search from space. From the ground, the HARPS spectrograph on the European Southern Observatory's La Silla 3.6-meter telescope in Chile is leading the Doppler wobble search, but there are many other telescopes in the hunt.

With almost 2,000 to choose from, it’s hard to narrow down a few. Small solid planets in the habitable zone are automatically standouts, but Matthews singled out five other exoplanets that have expanded our perspective on how planets form and
6 0
3 years ago
Read 2 more answers
A scientist wants to model an internal organ with connective tissue as a mass on a spring. The mass of the organ is 2.0 kg, and
vichka [17]

Answer:

Spring constant, k = 5483.11 N/m

Explanation:

It is given that,

Mass of the organ, m = 2 kg

The natural period of oscillation is, T = 0.12 s

Let k is the spring constant for the spring in the scientist's model. The period of oscillation is given by :

T=2\pi\sqrt{\dfrac{m}{k}}

k=\dfrac{4\pi^2 m}{T^2}

k=\dfrac{4\pi^2 \times 2\ kg}{(0.12\ s)^2}

k = 5483.11 N/m

So, the  spring constant for the spring in the scientist's model is 5483.11 N/m.

5 0
3 years ago
The air pressure at the ocean surface a few miles from the shoreis most likely
frez [133]
The air pressure is most likely lower.
8 0
3 years ago
The siren on an ambulance emits a sound of frequency 2.80×103Hz. If the ambulance is traveling at 26.0 m/s (93.6 km/h or 58.2 mi
Norma-Jean [14]

To solve this problem it is necessary to apply the concepts related to the described wavelength through frequency and speed. Mathematically it can be expressed as:

\lambda = \frac{v}{f}

Where,

\lambda = Wavelength

f = Frequency

v = Velocity

Our values are given as,

f = 2.8*10^3Hz

v = 340m/s \rightarrow Speed of sound

Keep in mind that we do not use the travel speed of the ambulance because we are in front of it. In case it approached or moved away we should use the concepts related to the Doppler effect:

Replacing we have,

\lambda = \frac{340}{2.8*10^3}

\lambda = 0.1214m

Therefore the frequency that you hear if you are standing in from of the ambulance is 0.1214m

5 0
3 years ago
If two arm wrestlers exert a force on each other’s hands, and the hands don’t move, the forces must be *
jeyben [28]
Balanced. They’re equally as strong so as their arm wrestling, neither of the men’s hands go down. Because they’re equally/balanced as strong.
3 0
3 years ago
Other questions:
  • How are the climates of coastal regions affected by the specific heat capacity of water?
    10·1 answer
  • How does kinetic energy affect the stopping distance of a small vehicle compared to a large vehicle?
    14·1 answer
  • Which of the following elements has the lowest electronegativity?
    8·1 answer
  • When placed in direct sunlight, which an object will absorb the most visible light energy
    5·1 answer
  • 4. A latch holding a cart in place, hanging high above the ground, breaks and the cart falls. The cart started from rest and is
    7·1 answer
  • A shopper at the Fries’ market place pushes a 13.0-kg shopping cart at a constant velocity for a distance of 58.7 m on a level s
    12·1 answer
  • Anissa slides down a playground slide sloped at 25o. The coefficient of kinetic friction between Anissa and the slide is 0.15. I
    12·1 answer
  • How do solar panels create electricity
    7·1 answer
  • B)
    15·1 answer
  • A diagram labeled Before Collision shows two train cars moving toward each other. The car on the left is labeled m Subscript 1 B
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!