1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
3 years ago
8

Suppose we have a laser emitting a diffraction-limited beam (=632 nm) with a 2-mm diameter. How big a light spot from this lase

r would be produced on the surface of the Moon (distance to the Moon is R=376000 km)? Neglect any effects of the Earth’s atmosphere
Physics
1 answer:
expeople1 [14]3 years ago
5 0

Answer:

Explanation:

λ = wave length = 632 x 10⁻⁹

slit width a = 2 x 10⁻³ m

angular separation of central maxima

= 2 x λ /a

= 2 x 632 x 10⁻⁹ / 2 x 10⁻³

= 632 x 10⁻⁶ rad

width in m of light spot.

= 632 x 10⁻⁶  x 376000 km

= 237.632 km

You might be interested in
A satellite is to be launched into an orbit of radius,r Show that v = 2gr, where V is the
Snezhnost [94]

Explanation:

We start by using the conservation law of energy:

\Delta{K} + \Delta{U} = 0

or

\dfrac{1}{2}mv^2 - G\dfrac{mM}{r} = 0

Simplifying the above equation, we get

v^2 = 2G\dfrac{M}{r}

We can rewrite this as

v^2 = 2\left(G\dfrac{M}{r^2}\right)r

Note that the expression inside the parenthesis is simply the acceleration due to gravity g so we can write

v^2 = 2gr

where v is the launch velocity.

6 0
3 years ago
An object is thrown with a force of 30 Newtons and ends up with an acceleration of 3 m/s ^ 2 due to that throw. What is the mass
jonny [76]

Answer:

F=30N

a= 3m/s^2

m=?

F=ma

30=m(3)

30/3=m

m=10kg

The mass of the ball is 10kg

4 0
3 years ago
A stone is thrown vertically into the air at an initial velocity of 96 ft/s. On Mars, the height s (in feet) of the stone above
vladimir1956 [14]

Answer:

240 ft

Explanation:

t = Time taken

u = Initial velocity = 96 ft/s

v = Final velocity

s = Displacement

a = Acceleration = 12 m/s² on Mars 32 ft/s² on Earth negative due to upward direction

Mars

s=ut+\frac{1}{2}at^2\\\Rightarrow s=96\times t+\frac{1}{2}\times -12\times t^2\\\Rightarrow s=96t-6t^2\ ft

Earth

s=ut+\frac{1}{2}at^2\\\Rightarrow s=96\times t+\frac{1}{2}\times -32\times t^2\\\Rightarrow s=96t-16t^2\ ft

Differentiating the first equation with respect to time we get

\frac{ds}{dt}=96-12t

Equating with zero

0=96-12t\\\Rightarrow t=\frac{96}{12}=8\ s

Differentiating the second equation with respect to time we get

\frac{ds}{dt}=96-32t

Equating with zero

0=96-32t\\\Rightarrow t=\frac{96}{32}=3\ s

Applying the time taken to the above equations, we get

s=96t-6t^2\ ft\\\Rightarrow s=96\times 8-6\times 8^2\\\Rightarrow s=384

s=96t-16t^2\\\Rightarrow s=96\times 3-16\times 3^2\\\Rightarrow s=144

Difference in height = 384-144 = 240 ft

The stone will travel 240 ft higher on Mars

6 0
3 years ago
Starting velocity: 50 m/s
Taya2010 [7]

Please find attached photograph for your answer. Please do comment whether it is useful or not

6 0
3 years ago
For a magnetic field strength of 2T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical
nydimaria [60]

Answer:

Incomplete question

This is the complete question

For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter

Explanation:

Given the magnetic field

B=2T

Lenght of rod is 1mm

L=1/1000=0.001m

Diameter of rod=1.5mm

d=1.5/1000=0.0015m

Radius is given as

r=d/2=0.0015/2

r=0.00075m

Area of the circle is πr²

A=π×0.00075²

A=1.77×10^-6m²

Given that the voltage applied is 100mV

V=0.1V

Given that resistive is 0.6 Ωm

We can calculate the resistance of the cylinder by using

R= ρl/A

R=0.6×0.001/1.77×10^-6

R=339.4Ω

Then the current can be calculated, using ohms law

V=iR

i=V/R

i=0.1/339.4

i=2.95×10^-4 A

i=29.5 mA

The force in a magnetic field of a wire is given as

B=μoI/2πR

Where

μo is a constant and its value is

μo=4π×10^-7 Tm/A

Then,

B=4π×10^-7×2.95×10^-4/(2π×0.00075)

B=8.43×10^-8 T

Then, the force is given as

F=iLB

Since B=2T

F=iL(2B)

F=2.95×10^-4×2×8.34×10^-8

F=4.97×10^-11N

7 0
3 years ago
Other questions:
  • Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from the edge, but Alice takes a running
    6·1 answer
  • Higher-amplitude waves carry more energy. Which of the following sounds would carry the MOST energy?
    14·2 answers
  • Graphically determine the resultant of the following three vector displacements: (1) 34 m, 25º north of east; (2) 48 m, 33° east
    7·1 answer
  • Frank wrote several statements to summarize the relationship between the first and second laws of thermodynamics.
    11·2 answers
  • List one way to take advantage of creating even more kinetic energy on this particular technologically advanced field
    14·1 answer
  • Find the frequency of light emitted in the transition from the 148th orbit to the 139th orbit. Find the frequency of light absor
    10·1 answer
  • Formula:
    12·2 answers
  • How to get the answer
    15·1 answer
  • 4. An airplane normally flies at 240 km/hr. If it experiences a 80 km/hr tailwind
    5·1 answer
  • Name all the elements are in a molecule of indigo
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!