Simply look at the periodic table and fill in what you know based on the table
The number of protons = atomic number
The number of electrons, Which is the same as the atomic number for atoms.
The number of valence electrons that is given by the group that the element is in, the top number of each column in the periodic table.
Answer: Mass Of CFC that needs to evaporate for the freezing of water = 328.24 g
Explanation: Heat gained by the CFC = Heat lost by water
Heat lost by water = Heat required to take water's temperature to 0°c + Heat required to freeze water at 0°c
Heat required to take water's temperature from 33°c to 0°c = mCΔT
m = 201g, C = 4.18 J/(gK), ΔT = 33
mCΔT = 201 × 4.18 × 33 = 27725.94 J
Heat required to freeze water at 0°c = mL
m = 201g, L = 334 J/g
mL = 201 × 334 = 67134 J
Heat gained by CFC to vaporize = mH = 27725.94 + 67134 = 94859.94 J
H = 289 J/g, m = ?
m × 289 = 94859.9
m = 328.24 g
QED!!
Answer:
(a). 4°C, (b). 2.4M, (c). 11.1 g, (d). 89.01 g, (e). 139.2 g and (f). 58 g/mol.
Explanation:
Without mincing words let's dive straight into the solution to the question.
(a). The freezing point depression can be Determine by subtracting the value of the initial temperature from the final temperature. Therefore;
The freezing point depression = [ 1 - (-3)]° C = 4°C.
(b). The molality can be Determine by using the formula below;
Molality = the number of moles found in the solute/ solvent's weight(kg).
Molality = ( 11.1 / 58) × (1000)/ ( 90.4 - 11.1) = 2.4 M.
(c). The mass of acetone that was in the decanted solution = 11.1 g.
(d). The mass of water that was in the decanted solution = 89.01 g.
(e). 2.4 = x/ 58 × (1000/1000).
x = 2.4 × 58 = 139.2 g.
(f). The molar mass of acetone = (12) + (1 × 3) + 12 + 16 + 12 + (1 x 3) = 58 g/mol.
<span>density is defined as mass per volume.. so 94 mL makes no sense.</span>