Answer:
The general preparation of esters( for example ethyl ethanoate) is through a process known as ESTERIFICATION.
Explanation:
The formation of an ester by the reaction between an alkanol and an acid is known as esterification. This reaction is extremely slow and reversible at room temperature, and is catalyzed by a high concentration of hydrogen ions.
In the preparation of one of the simpler esters known as ETHYL ETHANOATE the reactants include ethanol(an alcohol) and glacial ethanoic acid(a carboxylic acid) in the presence of concentrated tetraoxosulphate VI acid as a CATALYST. Note that, a catalyst is any substance that is able to increase the rate of a chemical reaction.
The mixture is warmed in a water bath( hot but not boiling) for about 25 minutes. The mixture is poured into a beaker partially filled with a sodium or calcium chloride to remove interacted ethanol. The ethyl ETHANOATE floats on the mixture as oily globules.
Electrolyte is any species which when dissolved in solvent particularly water dissociates into cations and anions. Electrolytes are conductors of electricity. In given options;
CCl₄ (Tetrachloromethane) is a covalent compound. And it doesn't dissociate to any cation or anion. So it is not electrolyte.
SiO₂ (Silicon Dioxide) is also covalent in nature and exist in giant framework. It is not electrolyte.
Glucose (C₆H₁₂O₆) is also covalent compound. And doesn't produced any ion in water, hence it is not electrolyte.
H₂SO₄ (Sulfuric acid) is Electrolyte. When it is dissolved in water it produces H⁺ and SO₄²⁻ ions as follow,
H₂SO₄ → 2 H⁺ ₍aq₎ + SO₄²⁻ ₍aq₎
Result:
H₂SO₄ is electrolyte.
The answer is that a full octet makes the noble gases nonreactive. Hope this helps
Answer:
Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson's plum pudding model of the atom had negatively-charged electrons embedded within a positively-charged "soup.
Answer:
A , B, C
Explanation: D is a Diamagnetic