Answer:
8.34
Explanation:
1) how much moles of NH₃ are in the reaction;
2) how much moles of H₂ are in the reaction;
3) the required mass of the H₂.
all the details are in the attachment; the answer is marked with red colour.
Note1: M(NH₃) - molar mass of the NH₃, constant; M(H₂) - the molar mass of the H₂, constant; ν(NH₃) - quantity of NH₃; ν(H₂) - quantity of H₂.
Note2: the suggested solution is not the shortest one.
The type of covalent bond is formed between amino acid molecules during protein synthesis will be <u>"peptide bond".</u>
<u />
A peptide bond would be a sort of covalent link that connects an amino acid's carboxyl group to its amino group. Amino acids itself were comprised of atoms bonded together through covalent bonds.
Two atoms share an electron pair equally in a covalent link. Peptide (amide) but also disulfide links between amino acids, as well as C-C, C-O, and C-N bonds within amino acids, represent examples of significant covalent bonds.
Therefore, the type of covalent bond is formed between amino acid molecules during protein synthesis will be <u>"</u><u>peptide bond"</u><u>.</u>
<u />
To know more about covalent bond
brainly.com/question/4463646
#SPJ4
<u />
Polar protic solvents actually speed up the rate of the unimolecular substitution reaction because the large dipole moment of the solvent helps to stabilize the transition state. The highly positive and highly negative parts interact with the substrate to lower the energy of the transition state.
They bond because they want to make their outer electron shells more stable
Hope this helps
Have a happy holidays