Answer:
3.59 moles
Explanation:
Hopefully this helps! :)
Mark as brainliest if right!
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
If one were to match the ratio of atoms of the elements found in this molecular formula of artificial sweetener it would be :
Carbon - 7 atoms
Hydrogen - 5 atoms
Nitrogen - 1 atom
Oxygen - 3 atoms.
At 50 degrees Celsius and standard pressure inter-molecular forces of attraction are strongest in a sample of ethanoic acid.
Ethanoic acid has hydrogen atom bonded with a more electronegative atom; Oxygen. As a result, the molecule possesses strong intermolecular Hydrogen Bonds. Therefore; ethanoic acid, and all other carboxyllic acids have the tendency to form dimers.