A)We know the formula of the angular speed is ω = 2π / TWhere T is the time period.When second hand completes one revolution then the time taken is 60s.So T = 60sThen the angular speed of the second hand is ω= 2π / (60s) = 0.1047 rad/sb)When the minute hand completes one revolution the time taken is T = 1 hr = 3600sThen the angular speed of the minute hand is ω =(2π) / (3600s) = 0.001745 rad/sc)When the hour hand completes one revolution then the timeperiod is T = 12hrs = (12)(3600)sThen the angular speed of the hour hand is ω =(2π) / [(12)(3600)s] = 1.45444 x 10^-4 rad/s
Answer:
Speed = 3 [km/h]
Explanation:
To solve this problem we must use the definition of speed which relates the distance traveled for a while.
Distance = 1.5 [km] = 1500 [m].
time = 0.5 [hr] = 1800 [s]
Speed = Distance/time
Speed = 1.5/0.5
Speed = 3 [km/h] or 1500/1800 = 0.8333[m/s]
The Kinetic<span> Molecular </span>Theory<span> explains the forces between </span>molecules<span> and the energy that </span>they<span> possess.
</span>
If you mean S is the distance then it is true
Velocity = Distance / time
Answer:
a scientist examines the results and answers the lab question- last choice