<h2>QUESTION:- It is easier to lift the same load by using three pulley system than by using two-pulley system.</h2>
<h2>ANSWER:- IN CASE OF IDEAL PULLEY SYSTEM</h2>
<h2>REASON:- </h2>
Logic behind is lies behind the mechanical advantage of the provided bt the Pulley system.
as if we calculate the mechanical advantage of the 2 Pulley system we will have the value 2
And if we will calculate the mechanical advantage of the 3 pulley system then we will get the value of 3
so due to extra mechanical advantage we feel it easy to move with 3 pulley system then 2 Pulley system

Your weight pushing down on the chair is the action force. The reaction force is the force exerted by the chair that pushes up on your body.
Answer:
The mass of the block, M =T/(3a +g) Kg
Explanation:
Given,
The upward acceleration of the block a = 3a
The constant force acting on the block, F₀ = Ma = 3Ma
The mass of the block, M = ?
In an Atwood's machine, the upward force of the block is given by the relation
Ma = T - Mg
M x 3a = T - Ma
3Ma + Mg = T
M = T/(3a +g) Kg
Where 'T' is the tension of the string.
Hence, the mass of the block in Atwood's machine is, M = T/(3a +g) Kg